The Signpost Series 'Pointing the way to a low emissions agriculture'

Protected Urea

Dr Patrick Forrestal & Dr David Wall

Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co Wexford

Sources of N?

- Biological fixation from legumes
- Manure mineral and organic N
- Fertilisers
- Atmospheric deposition

Nutrients including N fertiliser: Where are the signs pointing over the next decade?

The Farm to Fork Strategy is at the heart of the European Green Deal

States the EU Commission's intention to:

"act to reduce nutrient losses by at least 50%"

Signals "will reduce the use of fertilisers by at least a 20% by 2030"

Why?

Because, as outlined, nutrients not absorbed by plants are a "major source of air, soil and water pollution and of climate impacts" and

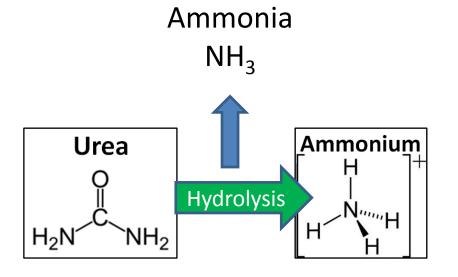
"It (fertiliser) has reduced biodiversity in rivers, lakes, wetlands and seas"

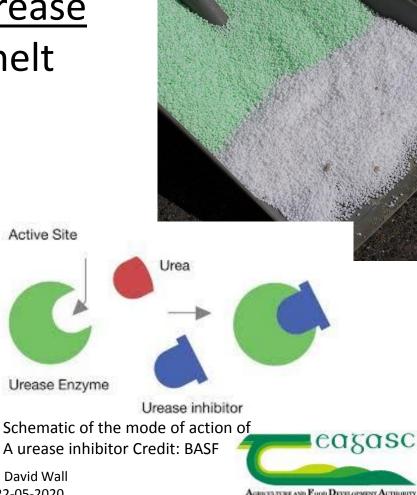
Why Protected Urea Now?

We need to show progress towards reduced emissions Protected urea is the largest single tool on the table

- Yield grows top yields
- Cost costs less than CAN
- Greenhouse Gas reduces emissions
- Ammonia holds onto N to grow grass

 \overline{\Omega}
- We get credit for reduced emissions





Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020

What is protected N/urea?

 Urea N fertiliser made safe from ammonia gas loss with a <u>urease</u> <u>inhibitor</u> on surface or in melt

Urease inhibitors

 Three urease inhibitors are registered under the EU fertiliser regulations

– NBPT (from: Koch & others)

– NBPT+NPPT (from: BASF)

-2-NPT (from: SKW)

 Department of Ag. will be carrying out surveillance to check that regulatory levels are met at the point of sale

There ar fertil

s from 6 c List

1

2

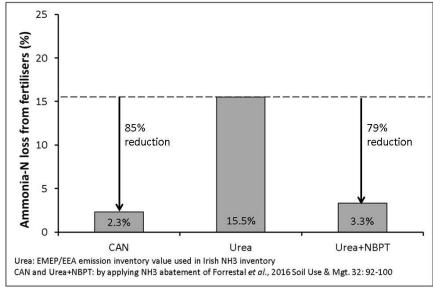
3

4

5

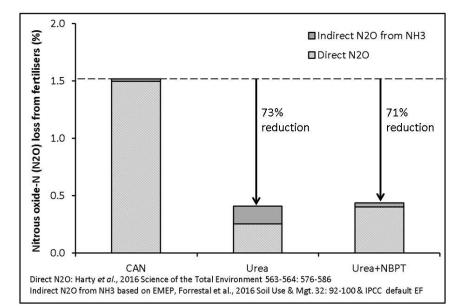
6

cazasc


AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

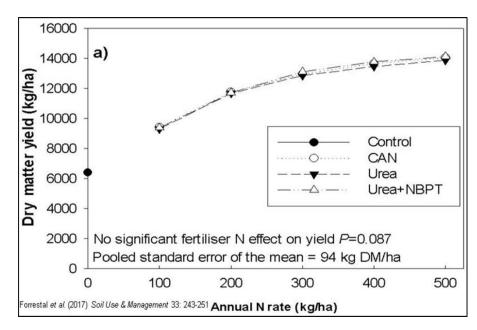
F	+ sulphur		- sulphur			
Company	Product Name	Inhibitor Type & Name	N %	P %	K %	S %
Grassland	IFI Topper N-Sure	NBPT + NPPT (LIMUS)	46	-	-	(= 22
Fertilisers IFI Super Topper		NBPT + NPPT (LIMUS)	38	-	1-1	7
(Kilkenny)	N-Sure					255
İFI	IFT Topper Boost NBPT + NPPT (LIMUS) N-Sure		29	-	14	3.8
Grassland	Eco Urea	NBPT + NPPT (LIMUS)	46	(=)	(-)	# X
Agro	Eco N 38	NBPT + NPPT (LIMUS)	38	-	-	7.6
	Eco 29-0-14 +S	NBPT + NPPT (LIMUS)	29	121	14	2
	Alzon Neo-N	2-NPT + MPA	46	120	8 <u>44</u> 1	<u>-</u> 1
	Alzon Neo-N + S	2-NPT + MPA	40	-	-	6
Goulding	Sustain / KaN	NBPT (Agrotain)	46	-	1-1	-
Fertiliser	Sustain / KaN	NBPT (Agrotain)	38		1.71	7
	Sustain / KaN	NBPT (Agrotain)	29	l a n ,	14	3.5
NitroFert	Nitro Guard	NBPT + NPPT (LIMUS)	46	-	0 - 8	- 73
	Nitro Guard NBPT + NPPT (LIMUS)		38	-	(-)	7
	Nitro Guard	NBPT + NPPT (LIMUS)	30	-	15	2
Target	UreaMax	NBPT + NPPT (LIMUS)	46	-	(=)	-
Fertilisers	UreaMax + S	NBPT + NPPT (LIMUS)	38	-	-	7
	29-0-14+4% S Max	NBPT + NPPT (LIMUS)	29	_	14	4
Yara	Yara Vera AMIPLUS	NBPT (AMIPLUS)	46	-	-	_

Teagasc urea + NBPT Research - Gases

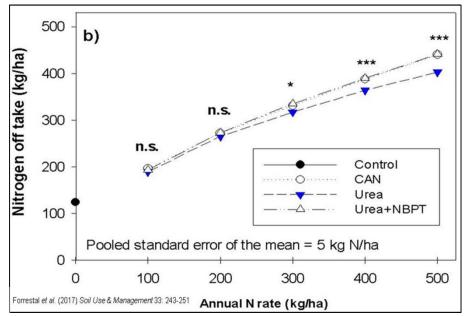


Ammonia

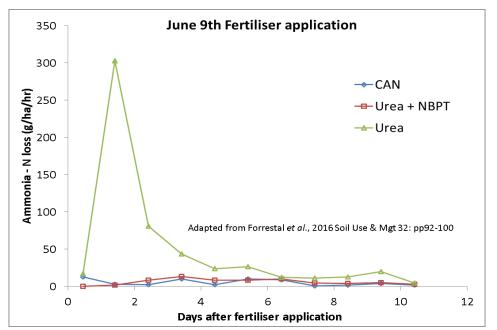
Nitrous oxide



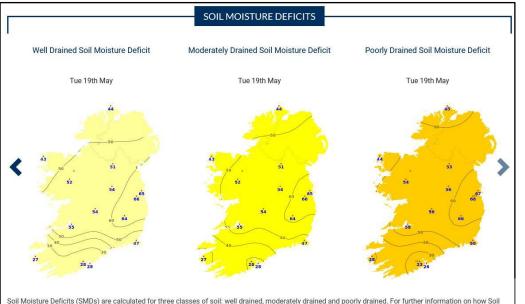
Teagasc urea + NBPT Research – Grass Production



Yield



N recovery



Protection from Ammonia loss in dry summer weather

Will a urease inhibitor protect urea from loss in dry summer conditions?

Yes, this is what it is what protected urea products are designed to do

Moisture Deficits are calculated, click here.

What happens to N response with High and climbing Soil Moisture Deficit?

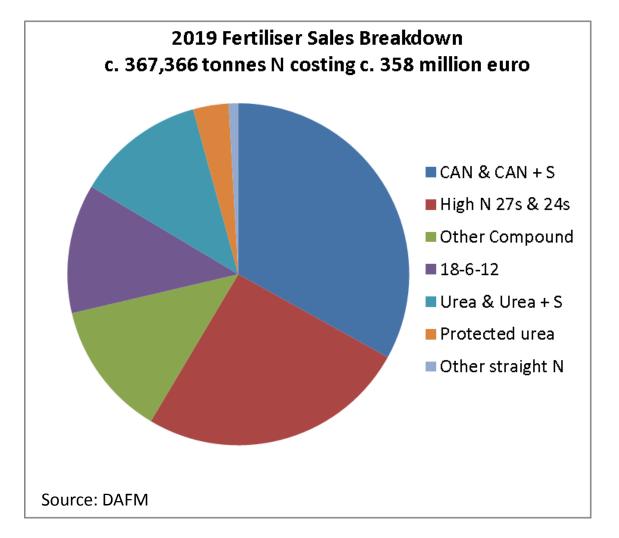
Nitrogen is not a substitute for water (think 2018) growth response to protected urea and other N forms will be disappointing until Deficits decline, adding more N won't change this

Will protected urea cost more?

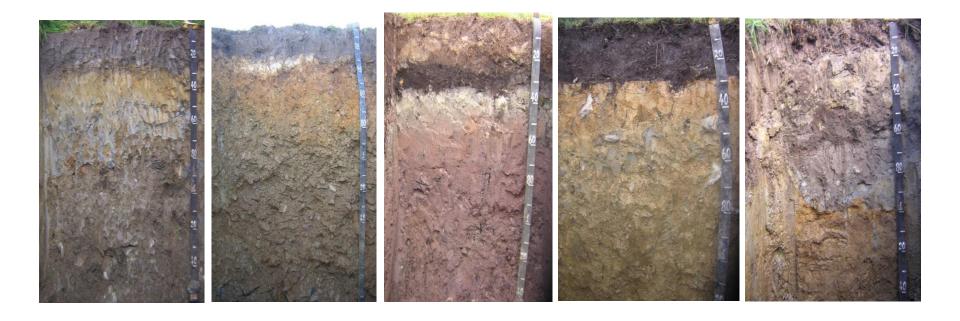
Work it out per kg/unit of N not per tonne

E.g. Protected urea @ 385/t ÷ 460kgN/t = €0.84/kg N

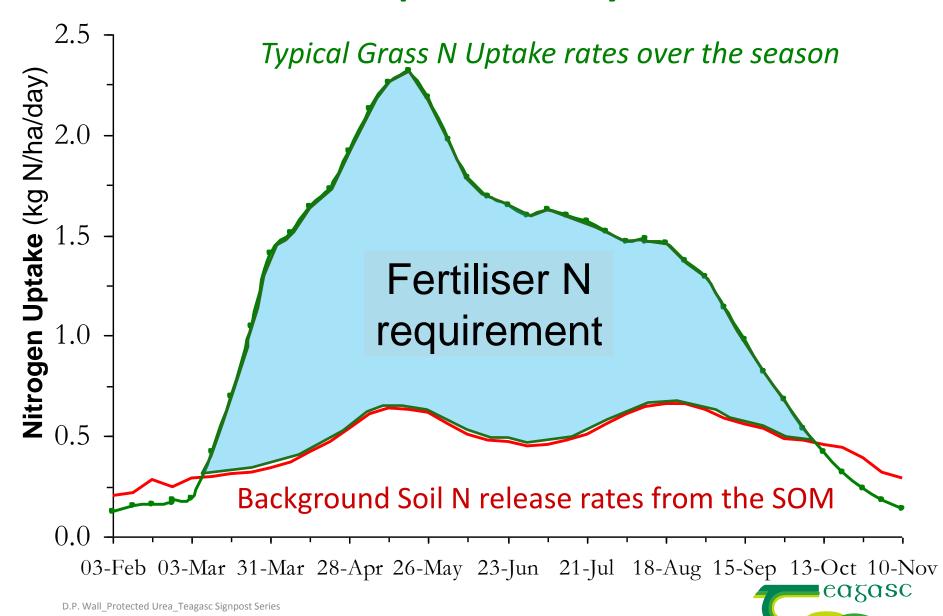
• E.g. CAN


@ $240/t \div 270 \text{kgN/t} = \$0.89/\text{kg N}$

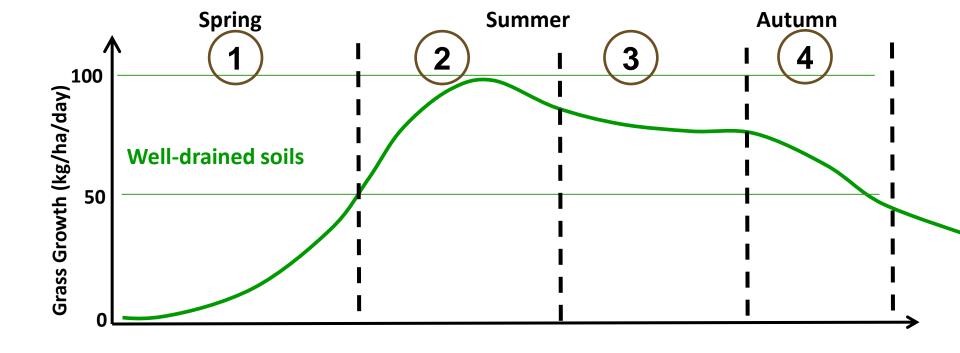
Fertiliser		CAN	Protected urea
Big bag	(kg)	500	375
Nitrogen	(%)	27	46
Big bag	(kg N)	135	172.5
At 30 kg N/ha covers	(ha)	4.5	5.7
At 24 units/ac covers	s (ac)	11.1	14.1



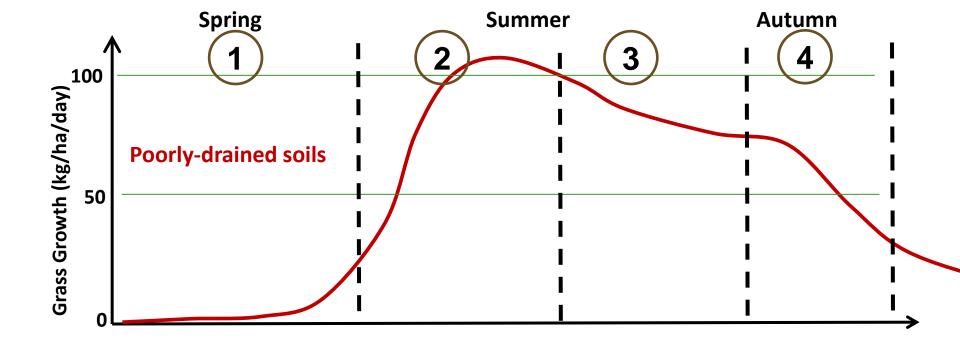
If the Greenhouse Gas and Ammonia abatement from fertiliser identified by Teagasc is to be availed of substantial change in fertiliser selection will be need.

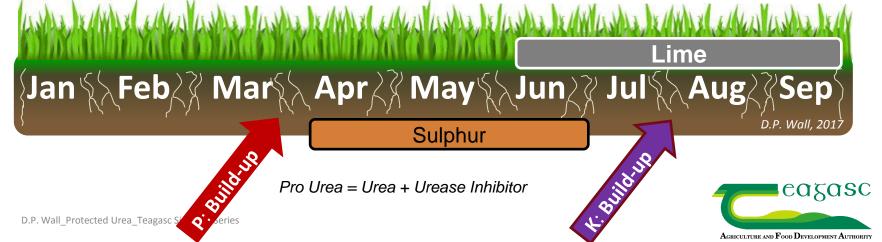


Nutrient advice ? One soil does not fit all!






Fertiliser N Requirement by Grass Swards



AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Protected Urea - Grazing Fertiliser Programmes

Example fertiliser programmes integrating protected urea during the growing season for dairy and drystock farms at different stocking rates and soil test levels

<u>D</u> :	air <u>y</u>	Table 1. Recommended rates of N, P & K (kg/ha) & fertiliser products (kg/ha). Farm stocked at 210kg Org N/ha or 2.5LU/ha . Soil P & K levels assumed to be index 1							
Ad	lvice	Feb	March	April	May	June / July	Sept		
	oduct g/ha)	55 kg/ha Pro-Urea	310 kg/ha 18-6-12+S	125 kg/ha Pro-Urea	310 kg/ha 18-6-12	60 kg/ha Pro-Urea	55 kg/ha Pro-Urea	Total kg/ha	
N	250	25	56	58	56	28	25	248	
P	39		19		19			38	
K	95		37		37			72	
S	15		9		9			18	
Cos	t €/ha	21	115	48	115	23	21	€343ha	

Pro-Urea = Urea 46% + NBPT / 2-NBPT, Cost/tonne = ϵ 380/t, Pro-Urea+S (40% N & 6% S)= ϵ 380t/, 18-6-12+ 3% S = ϵ 370, To convert units/ac to kg/ha multiply by 1.25. Apply 125kg/ha of MOP 50% once every 4 years.

Further information available on the Teagasc Website

https://www.teagasc.ie/crops/soil--soil-fertility/protected-urea/

Note: Complete a farm fertiliser plan to determine max. N &P allowances as per Nitrates Legislation

Summary: why Protected Urea Now?

We need to show progress towards reduced emissions Protected urea is the largest single tool on the table

- Yield grows top yields
- Cost costs less than CAN
- Greenhouse Gas reduces emissions
- Ammonia holds onto N to grow grass ☑
- We get credit for reduced emissions

Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020