

Water quality in Ireland Where to from here?

Jenny Deakin and Eva Mockler With thanks to colleagues from the EPA Water Programme

Outline

What is the condition of our waters?

Distribution of ecological status

The problems are widespread

Ecological status in 2018

Water body type	Satisfactory (%)	Change since 2015
Rivers	53%	5.5% 🖓
Lakes	50%	4.3%
Estuaries	38%	Stable
Coastal	80%	Stable
Canals	87%	Stable
Groundwater	92%	1% 仓

Our freshwaters and estuaries are in trouble

Trends in river waterbody status

High status are in decline, Moderate/Poor are increasing

High status waters

Only 20 highest quality sites left out of 500 in the 1980s

What is causing the problems?

impacts quality Water

Impacts of Significant Pressures on At Risk Waterbodies

Good status objective water bodies

- 1. Excess Nutrients
- 2. Morphology
- 3. Organic pollution

Impacts of Significant Pressures on At Risk Waterbodies

High status objective water bodies

- 1. Morphology
- 2. Excess Nutrients
- 3. Hydrology

More of this....

High status, Trimoge River, Co Mayo Photo: B. Kennedy

Good status, Dalgan River, Co Mayo Photo: B. Kennedy

And less of this....

A closer look at nutrients

National Source Apportionment – emissions to water

Based on 2012 DAFM data + 2014 UWW. Currently being updated

Phosphorus sources Nitr

Nitrogen sources

Urban sources of P are large but are most important in the coastal settlement areas. Elsewhere its mainly diffuse agricultural sources

Diffuse agricultural sources of nitrogen are much larger than urban sources

N and P behave very differently in the landscape

High risk for **phosphorus** loss **Poorly** draining soils Overland flow dominant Poor correlation with intensity Need to break the pathway Lag time weeks to months High risk for **nitrogen** loss **Freely** draining soils Groundwater pathway dominant Strong correlation with intensity Needs source control Lag time months to years

Critical source areas – risk of nutrient losses from diffuse agriculture

CPC Environmental Protection Agency

River water quality 2016-2018

Regional agricultural nitrogen issues

- In the freely draining catchments in the south east, nitrogen losses continue to rise, and are over double the annual losses from the west.
- Agriculture is the main source.
- Spike in losses in 2018 in a drought year. 2020?

Regional agricultural phosphorus Issues

 In the poorly draining catchments, phosphorus losses are rising, and are over double the annual losses elsewhere.

Targeted Agriculture Measures for Water Quality

Measures to reduce phosphorus and sediment loss

On poorly draining soils - breaking the pathway between farm runoff and the receiving waters likely to be most effective.

Measures to reduce nitrogen losses

On more freely draining soils – improved nutrient management, clover, reduction of chemical N likely to be most effective.

'The right measure in the right place'

What are the measures?

"The right measure in the right place"

4th Nitrates action programme (NAP) + interim review 5th NAP in preparation

Baseline standard measures One size fits all Can only go so far Not enough on its own

Rules are largely input based

Source: DAFM

WFD River basin management plan – a targeted approach

190 Priority Areas for Action

Areas for Action process – all pressures together

Early signs of progress in the Areas for Action

River WBs in PAAs 2013-2018

- 303 no change
- 132 improved
 - 51 declined

Net improvement of 16.7%

River Q values in PAAs 2019

- 389 no change
 - 74 improved
 - 22 declined
- **Net improvement of 10.7%**

Targeting measures for phosphorus:

Riparian zones, buffer strips, engineered ditches, wetlands, ponds. Co-benefits for biodiversity, sediment, pathogens

Targeting measures for nitrogen:

Nutrient management planning, soil fertility, protected urea, clover, less application of chemical N. Co-benefits for ammonia, green house gases

Other drivers

Challenges and opportunities

- Join up the messaging, actions and supports
- Identify and support measures that achieve multiple benefits - for water quality, air quality (ammonia), biodiversity, climate, natural flood mitigation, amenity and health and well-being
- Share cross-disciplinary knowledge, data and training – collaborative working
- Set outcome, results based targets, as well as activity targets. Track progress towards them and share the learnings

Thank you

Environmental Protection Agency

Find out more on www.catchments.ie

Photo: Emma Quinlan