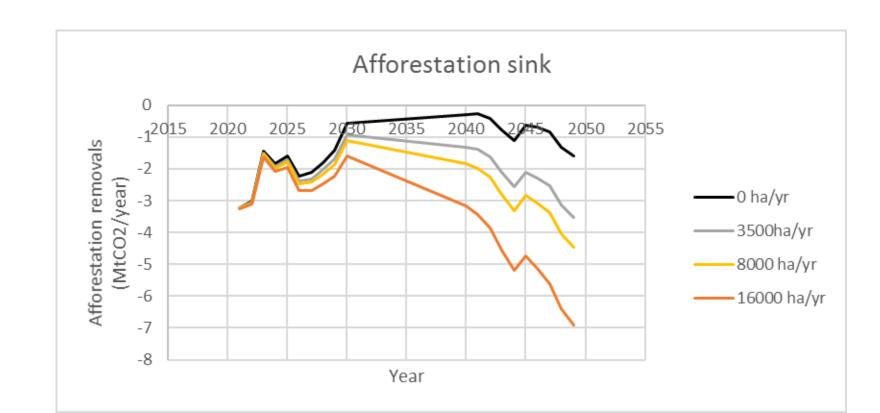
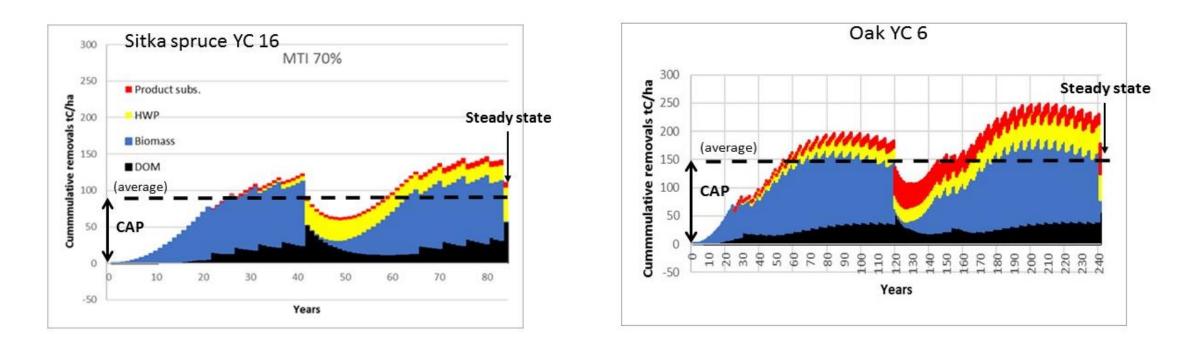
Climate Mitigation Options through Afforestation: An introduction to the Forest Carbon Tool

Tom Houlihan, Teagasc Dr Kevin Black, Forest Environmental and Research Services (FERS)



Afforestation scenarios to mid-century

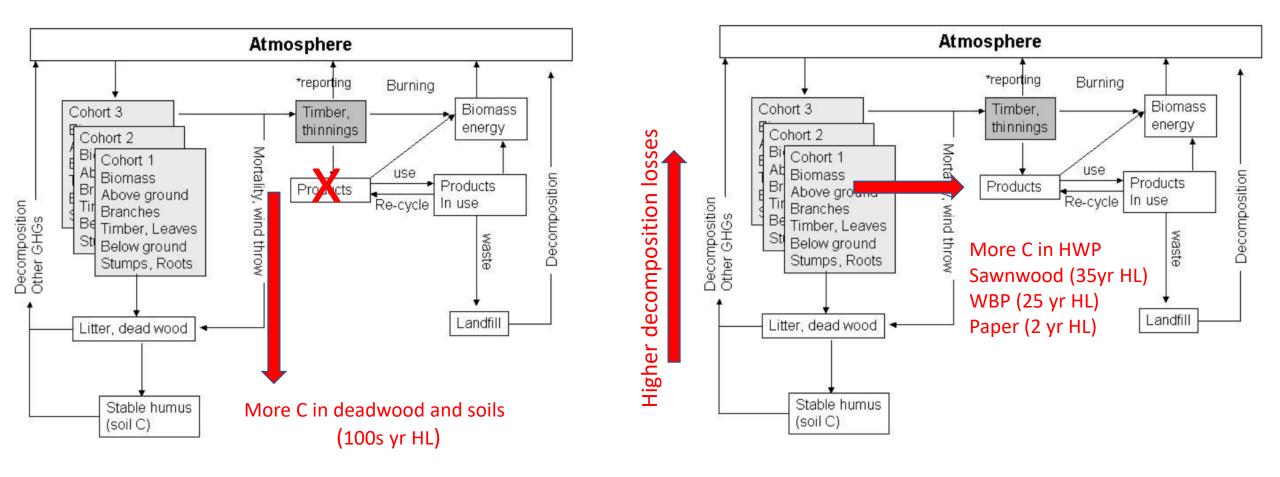
- Net removals from afforestation is the largest land based mitigation option
 - Main contributor to 26.8 MtCO₂ EU effort sharing target 2021-2030


Extent of sink to 2050 dependent on a range of factors including :

- Afforestation rate
- Species / productivity
- Avoiding deforestation
- Sustainable forest management

Concepts

 Afforestation is a once off mitigation (cyclical) and is not permanent unless managed sustainably



- CAP sequestration value (average cumulate value) is a measure of the once-off sequestration potential
- Mean annual sequestration rate until steady state reached
- The mean and CAP are normalised measures of sequestration, which allows comparisons over different rotation ages
- Longer rotations generally have a higher CAP values but a lower average annual sequestration rate

Concepts: Forest – HWP trade-offs

Forest retention

Harvest and replant

Forest Carbon Tool - assumptions and caveats

- Based on fixed management assumptions and timber flows for different species (see table below) ٠
- Higher uncertainties for some GPC categories (e.g. Agroforestry, Native Woodland Scheme) •
- Afforestation is assumed to be permanent (no deforestation and same management in perpetuity) •
- Afforestation is assumed not to lead to leakage (displacement or intensification leading to emissions elsewhere) •

Species groups	CODE	YC range	Management	Rotation length	Wood use
Spruce	SS	12 [#] , 14 [#] , 16, 18, 20, 24	Thinned	MMAI*** - 20%	Energy wood*, WBP**, palletwood and sawlog
Pine	LP	8,12	Unthinned	MMAI	WBP, palletwood
Other Conifers	ос	16	Thinned	MMAI	Energy wood, WBP*, palletwood and sawlog
Fast growing broadleaves (Sycamore, alder, birch)	FGB	6 ^{##} , 8	Thinned	Grow to diameter of 40-50cm###	Energy wood (early thinnings) and sawlog
Slow growing broadleaves (Oak)	SGB	4, 6	Thinned	Grow to diameter of 50cm (120-150 years)	Energy wood (early thinnings) and sawlog
# VC 13 9: 14 55 -		* Wood fuel options e.g. wood chips and firewood			

Table 2: Species, yield class, forest management and wood use assumptions applied to the species/species group options in the Forest Carbon Tool

YC 12 & 14 SS are unthinned

wood fuel options e.g. wood chips and mewood

** Wood-based panels

##Maximum diameter (DBH) for YC 6 is 35cm

*** MMAI is the age of maximum mean annual increment

###Huss et al., 2016

Assumptions - GPC categories

Table 1: Grant and premium category (GPC) description, yield class, forest management and wood use assumptions applied to GPC options in the Forest Carbon Tool

GPC Category	Description	Species/Species Group	Mix	% Open area	Yield Class (YC)	Wood Use
GPC 1	Unenclosed	SS	100	15.0	YC 16 and YC 18	Energy wood*, WBP**, palletwood and sawlog
GPC 2	Sitka spruce/Lodgepole pine	SS/LP	50:50	15.0	SS YC 12/LP YC 8	WBP for LP, WBP, palletwood and sawlog for SS, no thinning
GPC 3	10% Diverse Conifer/Broadleaf	SS/FGB^	90:10	15.0	Conifer YC 20/BL YC 6	Energy wood, WBP, palletwood and sawlog /FGB retention
GPC 3	10% Diverse Conifer/Broadleaf	SS/FGB	90:10	15.0	Conifer YC 24/BL YC 8	Energy wood, WBP, palletwood and sawlog / FGB retention
GPC 4	Diverse Conifer	Other conifers	100	15.0	YC 16	Energy wood, WBP, palletwood and sawlog
GPC 5	Broadleaf	FGB	100	15.0	YC 6	Energy wood (early thinnings) and sawlog
GPC 5	Broadleaf	FGB	100	15.0	YC 8	Energy wood (early thinnings) and sawlog
GPC 6	Oak	SGB^^	100	15.0	YC 4	Energy wood (early thinnings) and sawlog
GPC 6	Oak	SGB	100	15.0	YC 6	Energy wood (early thinnings) and sawlog
GPC 7	Beech	SGB	100	15.0	YC 4	Energy wood (early thinnings) and sawlog
GPC 7	Beech	SGB	100	15.0	YC 6	Energy wood (early thinnings) and sawlog
GPC 8	Alder/Birch	FGB	100	15.0	YC 6	Energy wood (early thinnings) and sawlog
GPC 8	Alder/Birch	FGB	100	15.0	YC 8	Energy wood (early thinnings) and sawlog
GPC 9	Native Woodland Est. Scenario 1^^^	SGB	100	15.0	YC 4	Long term retention (some timber removal e.g. sawlog, energy wood)
GPC 10	Native Woodland Est. Scenario 5^^^^	SGB/FGB	50:50	15.0	YC 4	Long term retention (some timber removal e.g. sawlog, energy wood)
GPC 11	Agroforestry (5m spacing)	SGB/FGB	100	0		Initial stocking of 400 reduced to 70 stems over the rotation (all sawn to HWP)
GPC 12	Forestry for Fibre	Eucalyptus nitens	100	15.0	YC 30	Energy wood
	^ Fast growing	g broadleaves (e.g. Sycamo	ore, alder,	* Wood fuel options e.g.	firewood and wood chips	

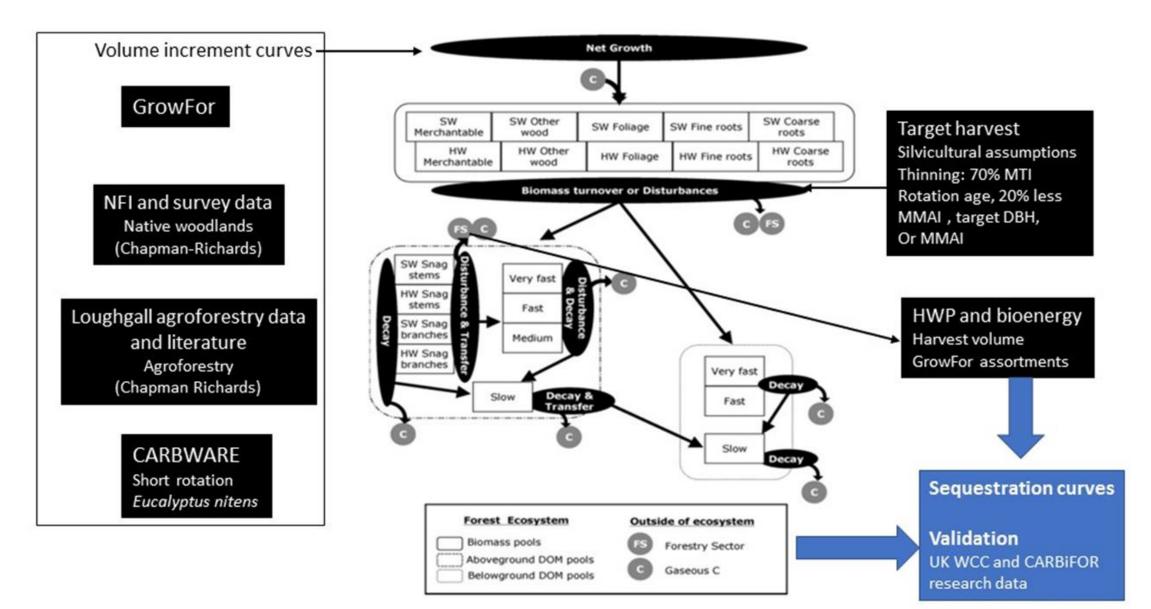
^^ Slow growing broadleaves (e.g. oak)

**Wood-based panels (WBP) from pulpwood

^^^ Values will be available subject to further data analysis and validation

Forest Carbon Tool - system boundaries

Included

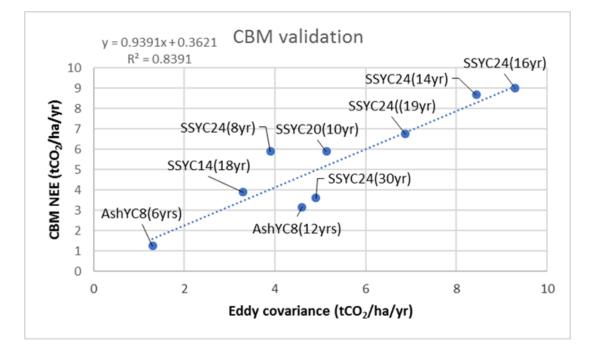

- Forest pools and organic soils
- HWP
- Fossil fuel replacement (thinnings)
- Livestock emissions (agroforestry)

Excluded

- Fossil fuel emissions from forestry operations
- Emissions from forest fires
- Emissions for loss of N₂O due to C mineralisation in soil
- N₂O emissions associated with application of urea
- Additional emissions from the milling sector
- Product substitution of wood for energy intensive materials such as concrete or steel
- Biomass(silage) and soil stock charges for Agroforestry are assumed to have a zero-carbon stock change (Duffy *et al.*, 2019; Fornara *et al.*, 2017).

Methods

CBM-CFS Model framework

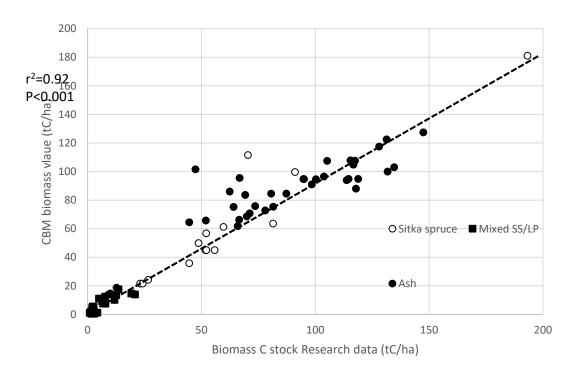


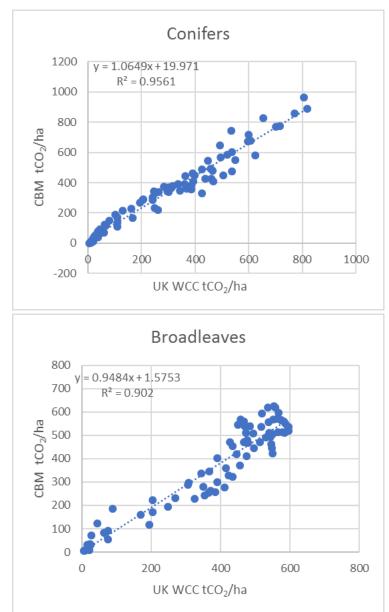
Methods

- Methods are fully in line with IPCC guidelines and identical to those used in the national GHG inventory
- Forest growth is based on published and validated models (some exceptions)
 - Forest C model validated and compared to other estimates
- Mortality, biomass turnover and decomposition based on COFORD research since 2002
- HWP assumption based on current timber flows
 - Sawlog is allocated to sawn wood assuming 43% processing loss (FAO/EUROSTAT)
 - Pulp and pallet is allocated to WBO assuming a 49% processing losses (FAO/EUROSTAT)
 - Decomposition of HWP based on IPCC default approach
- Fossil fuel displacement:
 - Sitka spruce 15% of 1st and 2nd thinnings (Woodflow, Knaggs and O Driscoll, 2016)
 - Broadleaves all non-sawlog assumed to be used for bioenergy
 - GPC 12 all timber used for bioenergy
 - Fossil fuel emission avoidance for energy substitution is based on a displacement factor for oil (0.26 tC/tC wood; Sathre and O'Connor, 2010, Smyth *et al.*, 2016)

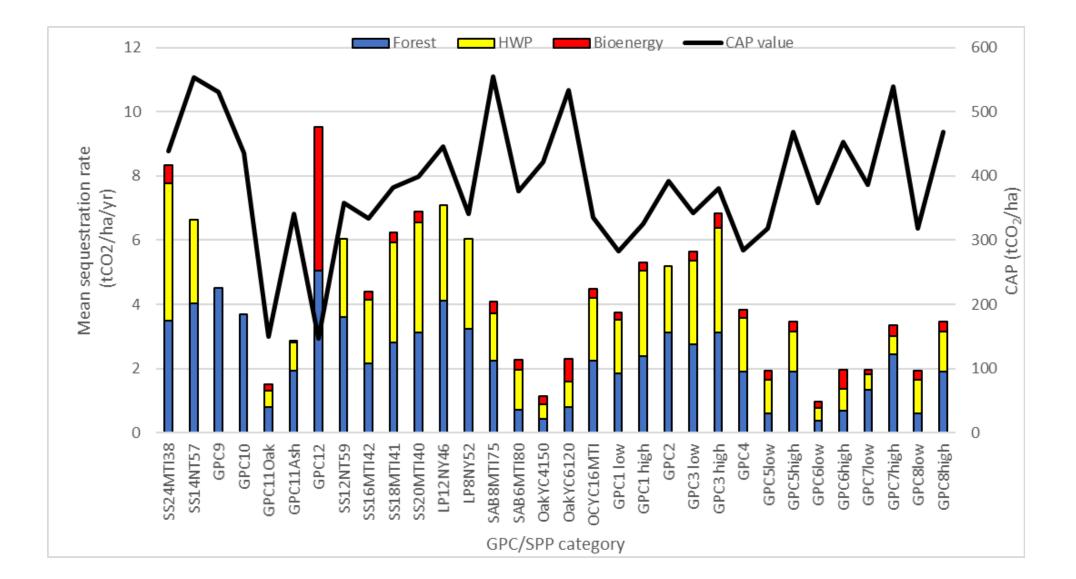
Validation - Eddy Covariance

- Eddy covariance measured 30min exchange of CO₂ between forests and the atmosphere
- Annual eddy covariance flux (NEE) should be the same as CBM modelled NEE (i.e. biomass, litter, deadwood and soils fluxes)




Black et al., 2007, Saunders et al in press

Validation - biomass stocks


• COFORD research data on measured biomass stocks for different forest types and ages

• UK Woodland carbon code estimates

Understanding the results

Summary

- Forests have many ecosystem services-carbon is just one small component
- Mean sequestration rates range from 1 to 9 tCO₂/ha
- Afforestation offers a once off removal but HWPs continue to contribute after steady state
 - Need additional forest policy to increase mitigation potential (e.g. forest management).
 - Product substitution
- Species with high CAP values effect for long term C captures (e.g. NWS, long rotation slow growing BL crops)
- Highly productive species are effective for quicker C capture and flows to HWP and bioenergy (e.g. S. spruce thinned and GPC12)
- No thin appears to provide a higher sequestration potential than thinned crops
 - (i.e. the HWP trade off) C is more resilient in the forest compared to HWPs
 - Product substitution