

Enhancing efficiency and sustainability of the food system

Johan Sanders, SignPost 22 October 2021

2/3 of all agricultural land in the world is used for animal feed;

In 2050 we have to feed 10 billion people with at least 50 gr protein per day. With the current system, for each 1kg N on our plate we need 7kg N input through fertilizers. We need 3x more Nitrogen fertilizer than our world can cope with.

Protein supply will become scarce in the world. We need radical changes:

- Input of nitrogen in Agriculture should be reduced
- Higher production of protein/ha
- Protein and nitrogen efficiency needs to be increased
- Transport of raw materials and end products should be reduced
- Farmers income/ha should be increased

Possible solutions

- Shifting towards a more plant-based protein in our food
- Growing animal **feed** crops on land which is unsuitable for growing **Food** crops
- Enhancing fertilization efficiency of crops by using legumes
- Recycle ammonia from manure digestates
- Using biorefinery to:
 - Enable a redistribution of proteins to the best suitable usage
 - Improve digestibility and feed conversion

A perfect crop to use is: READILY AVAILABLE

AND RIGHT UNDER OUR FEET

GRASS Lolium multiflorum/perenne

- Most common and easiest growing plant globally and in Ireland
- Unrivalled yield /ha and Protein/Lysine/Methionine content compared to other protein crops

Сгор	Yield (ton DM/ha)	Protein (kg/ha)	Lysine (kg/ha)	Methionine (kg/ha)
grass-clover mixture	13	2600	200	90
alfalfa	12	2600	200	90
peas	6	1300	92	13
field bean	6	1500	92	11
soy bean (US)	3	1050	65	14

- Perennial, full year around cover of the soil, CO2 binding, no erosion, limited costs
- For arable farmers a perfect rotation crop

Opening the full potential of Grass

Extruder Opened Grass

With **increased protein resistancy**, it is perfectly suitable as roughage for ruminants or horses

Sugar / FOS

Mineral C

55% of dry matter is protein with a higher essential amino acid composition than soy protein offers an appropriate alternative for environmentally and socially harmful soy meal in chicken, pigs and fish feeds.

A **prebiotic** that improves digestion, stimulates the immune system, as well as lowering the need for antibiotics.

A plant based, soluble, organic alternative for chemical or animal-derived fertilizers.

LCA: Biorefining of grass vs soymeal

•Less land use:

33%

- •Less ammonia and phosphate emission: 30% and 50%
- •Less GHG emissions 75%

•No longer imports are required of 20 M ton soy protein in EU and no import of minerals

•Biorefining 25 Mha EU grassland (35%) compensates for all soy import

•Non-GMO

Increases rural employability with 100 000fte per 1M ha of grassland

•Production on marginal land can substitute good agricultural land for protein production and no deforestation.

•Ireland can become a net exporter of protein products and prebiotics

Outlook: increase of NUE by grass biorefinery combined with mixed species swards and NH₃ stripping by Byosis technology

- Legumes in swards containing 6-9 different plant species do **require little N fertilizers** because these plants can fixate N from the air at even higher protein yields per ha
- Biorefining of these leaves increases the protein efficiency for cows so that some 40% of the protein can be fed to pigs at equal milk yields per hectare
- >50% of the nitrogen in the cow and pig manure can be recovered by stripping of ammonia; the other 50% goes back to the swards. Instead of buying N fertilizer, the farmer can sell N fertilizer to crop farms and protein to pig farms and produce the same amount of milk

Nitrogen Use Efficiency	Traditional grazing	Traditional grazing Including pig feed	Grass biorefinery	Biorefinery and Mixed species swards
No stripping	0,16	0,18	0,29	0,39
NH ₃ stripping		0,23	0,33	0,45

Farm Zero C project: Our holistic approach

Conclusions

- Biorefining of grass will increase animal protein production per ha by 50%;
- Biorefinery of leaves can substitute all soy imported in the EU and can make Ireland a net protein exporter
- Biorefinery will lead to increased rural employability and increased agricultural incomes
- Thank you for your attention

<u>Johan Sanders - johan@grassa.nl</u> - www.grassa.nl