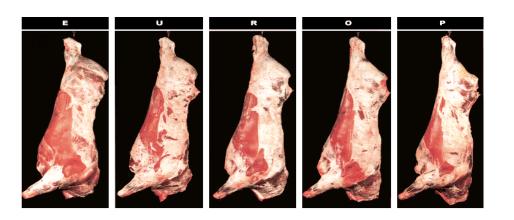
Perspectives on carcass pricing for the Irish beef sector

Paul Crosson and Laurence Shalloo

Beef Task Force Tuesday, 9 March 2021

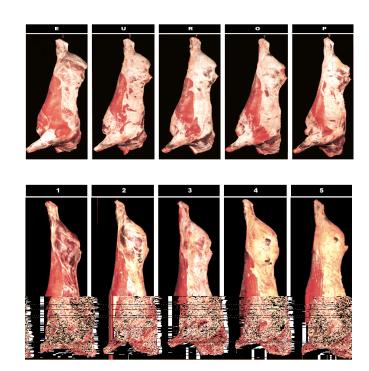
Irish Beef Sector Agreement


 Teagasc would scope out ... in depth study to look at a revised system (of beef pricing).

(Beef Task Force, 9 January 2020)

Presentation outline

- Review of current pricing model
- Review of meat processing technologies
- Overview of 'cuts-based' pricing concept



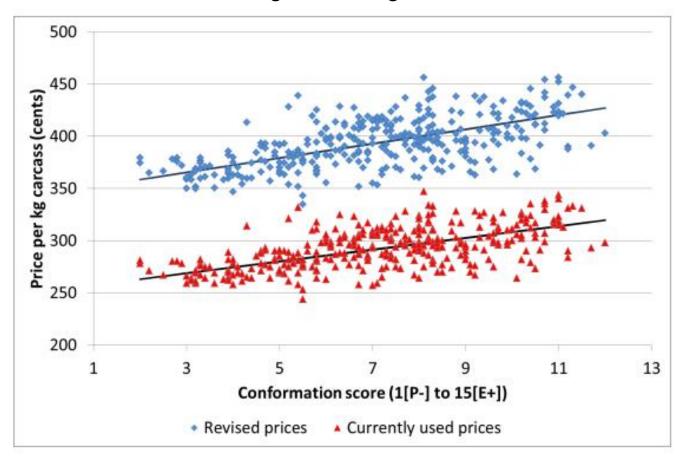
Current Pricing Model

Current pricing model

- Based on research by Michael Drennan (Teagasc)
 - Objective: to quantify the relationship between carcass grading (conformation and fat scores) and carcass value
- Carcasses mechanically grading
 - Video imaging analysis (VIA) system
 - 507 steers, 115 bulls, 40 heifers
 - Carcasses dissected in meat, fat & bone
 - 13 hindquarter cuts and 11 forequarter cuts

Impact of carcass grade on carcass proportions and value

	Intercept ¹	Conformation score	Fat score	R ²
Meat (g/kg)	698 ^a	+11.8 (0.40)***	-9.6 (0.47)***	0.73
Fat (g/kg)	113	-4.4 (0.36)***	+12.0 (0.56)***	0.67
Bone (g/kg)	190	-7.4 (0.20)***	-2.4 (0.24)***	0.71
Carcass value (c/kg)	296	+5.6 (0.30)***	-5.1 (0.36)***	0.60


¹ Intercept chosen = conformation & fat scores of 8 (Scale 1-15)

Source: Drennan et al.

Review of QPS –December 2020

- Updated prices used in the derivation of the price differentials between each carcass conformation and carcass fat subclass
- Price per kg differential between each conformation score subclass increases from 5.6 c/kg to 6.9 c/kg

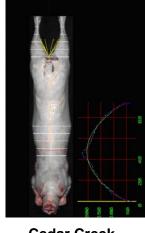
Recent technological innovations & implications for beef pricing

Comparison of carcass classification & grading schemes

Austr	ralia	Brazil	Canada	Europe	Japan	South Africa	USA
AUS-MEAT	MSA	-	Canada	EUROP	JMGA		USDA
Carcass	Cut-based Quality Carcass weight Sex Tropical breed Hanging method HGP Ossification Marbling Rib fat thickness pH Hump height Meat colour* Ageing time Cooking method	Carcass weight Sex Dentition Fat cover	Sex Quality Conformation Maturity Colour muscle Colour fat covering Yield and marbling on 12th rib Carcass weight Ribeye area Fat thickness Intramuscular fat	Carcass weight Sex Conformation Fat cover	Sex Quality Marbling Colour and brightness muscle Firmness and texture Fat colour and lustre Yield Left side weight On 6th rib: Ribeye area Rib thickness Fat thickness	Carcass weight Sex Dentition Conformation Fat cover	Sex Quality (12th rib) Marbling Maturity Firmness Yield Carcass weight Kidney, pelvic and heart fat External fat Ribeye area

Technology Overview

- Video Image Analysis (VIA)
 - E+V
 - Can determine subcutaneous fat cover but loses accuracy as the fat depth increases
 - Poor prediction of intramuscular fat
- X-ray based technologies
 - Computed Tomography (CT) 'gold-standard'
 - Dual energy x-ray absorptiometry (DEXA; sheep)
- Nuclear Magnetic Resonance (NMR)
 - Magnetic Resonance Imaging (MRI)
- Bioelectromagnetic Methods
 - Total-body electrical conductivity (TOBEC)
- Ultrasound (US)
 - Auto FOM



VIA Innovations

Manufacturer	2000 trials	Software Innovations	Hardware innovations	Commercial presence
Cedar Creek	✓	Minor	Minor	Presence in sheep NZ
E+V (installed presently)	✓	Minor	Minor	>70 in EU
Normaclass	X*	Intermediate	Minor	~50 systems in France


^{*}Normaclass not tested in 2000 -not suited to untrimmed carcass at the time

Cedar Creek VIAScan

E+V VBS2000

Normaclass MAC

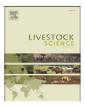
Findings from a recent French study

(Monteils et al., 2017)

- The EUROP grid is well adapted to estimate yield but it does not reflect marbling (e.g. explains 21% of variance in marbling score for steers).
- A set of 5 indicators was proposed: hindquarter weight, meat colour, retailcut yield, rib-eye area and marbling score.
- This set of indicators is the first step in developing a new way to assess the overall quality of beef carcasses in Europe.
- Will take further research and investment at industry level long term project
- In the short term yield of meat will remain paramount

Cuts-based pricing concept

Prediction of cut yields using VIA


Livestock Science 137 (2011) 130-140

Contents lists available at ScienceDirect

Livestock Science

journal homepage: www.elsevier.com/locate/livsci

Use of digital images to predict carcass cut yields in cattle[☆]

T. Pabiou a,b,d,*, W.F. Fikse b, A.R. Cromie a, M.G. Keane c, A. Näsholm b, D.P. Berry d

^d Moorepark Dairy Production Research Center, Teagasc, Fermoy, Co. Cork, Ireland

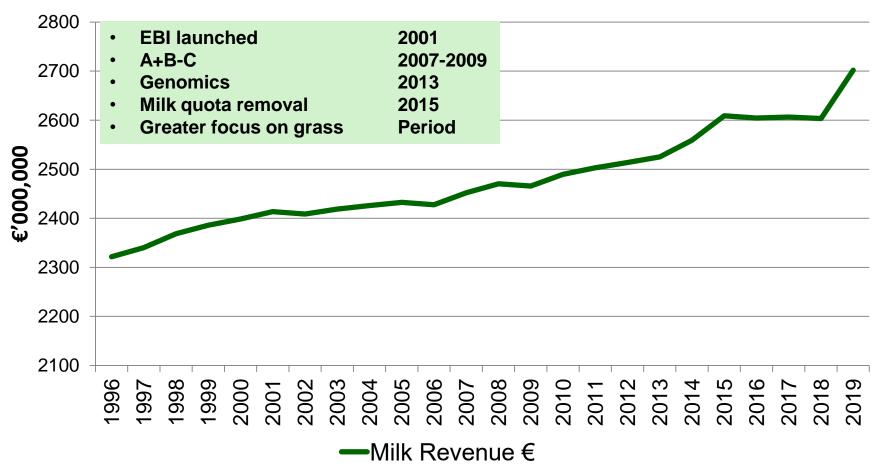
	CCW plus EUROP			CCW plus VIA				
	Bias (s.e)	RMSE	\mathbb{R}^2	r _e	Bias (s.e)	RMSE	\mathbb{R}^2	r _e
Overall weights (kg)								
Total meat	-1.06(0.70)	7.43	0.97	-0.16*	-0.74(0.63)	6.77	0.97	-0.02
Total fat	-0.76(0.62)	6.67	0.74	-0.01	-0.58(0.60)	6.38	0.77	-0.13
Total bone	0.18 (0.32)	3.38	0.79	-0.09	0.32 (0.30)	3.22	0.81	-0.12
Wholesale weights (kg)								
Lower value cuts	-0.34(0.61)	6.54	0.89	-0.07	0.15 (0.52)	5.60	0.92	-0.08
Medium value cuts	-0.01(0.31)	3.36	0.79	-0.00	0.13 (0.26)	2.73	0.86	-0.10
High value cuts	1.10 (0.37)**	3.91	0.89	-0.01	1.18 (0.31)**	3.27	0.93	0.05
Very high value cuts	-0.09 (0.16)	1.74	0.85	0.01	-0.11(0.16)	1.75	0.84	-0.01

More recent analysis have confirmed these relationships (Source: Shalloo & McHugh)

^a The Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland

^b Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, Uppsala, Sweden

^c Grange Research Center, Teagasc, Dunsany, Co. Meath, Ireland


What is Multiple Component Pricing

- Each component that has a value is included in the price and the items that have a cost are also included.
- Example: A + B C in milk pricing
 - Protein has a value (A)
 - Fat has a value (B)
 - Processing has a cost (C)

Trend in milk value – assuming base price of 30 c/l

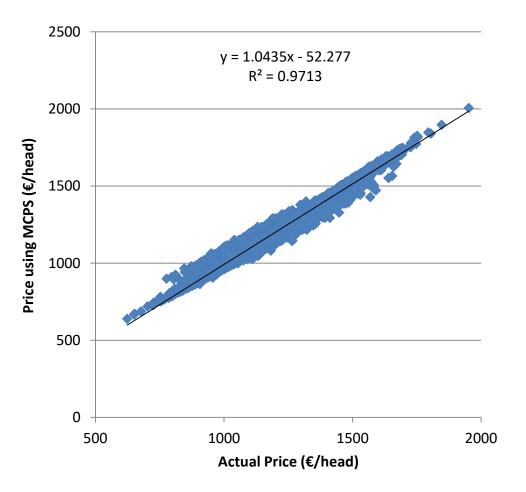
Solids alone worth €274 million per annum between 2006 and 2019

Multiple Component Pricing in beef

Source: Shalloo & McHugh

- A High value
 - Striploin, fillet, rump, cube roll
- B Medium value
 - Topside, knuckle, silverside flat, eye of round
- C Lower value
 - Flank, brisket, chuck and neck, heel/shank, chuck tender, LMC
- D Fifth quarter
- E Processing costs

Carcass value = A+B+C+D-E



Description of the carcass valuation model

- Assumptions for discussion
 - A High value =1
 - B Medium value = 0.66
 - C Lower value = 0.33
 - Fifth quarter worth €0.27/kg
 - Processing costs =€150/animal

Impact on price per head

Price diff (€/hd)	No. of carcases	Percentage of carcases		
-<120	16	0%		
-100	103	1%		
-80	11	0%		
-60	551	6%		
-40	2440	25%		
-20	1990	20%		
0	1950	20%		
20	1838	19%		
40	794	8%		
60	157	2%		
80	32	0%		
>100	10	0%		

Data from 9,892 animals.

Source: Shalloo and McHugh

Summary of Multiple Component Pricing in beef

- Provides more detailed signals for producers to breed animals with attributes that are desired by consumers
- Reflects cut returns and market preferences
- Allows cut off based on size of cuts rather than size of animal
- Allows additional components to be included in pricing
 - Marbling for certain cuts
- Currently a concept that requires feedback and further research

Summary

- Historically, Ireland have been innovators in carcass grading systems
- Pre-automation: manual classification by >65 DAFM staff
- First to adopt automated grading by VIA in 2004 (following review of systems by Teagasc and application to EU by DAFM)
- 'Drennan' model of carcass payment adopted in 2009/2010
- Current VIA technology could be developed to facilitate 'cuts-based' payment
- · Can be aligned to the beef breeding programme to increase genetic gain
- Research on grading and valuing carcass quality ongoing

