

Refining nutrient management for extensively managed grassland

Suzanne Higgins, Gillian Nicholl, Russell Adams, Emma Hayes, Sara Vero & Donnacha Doody

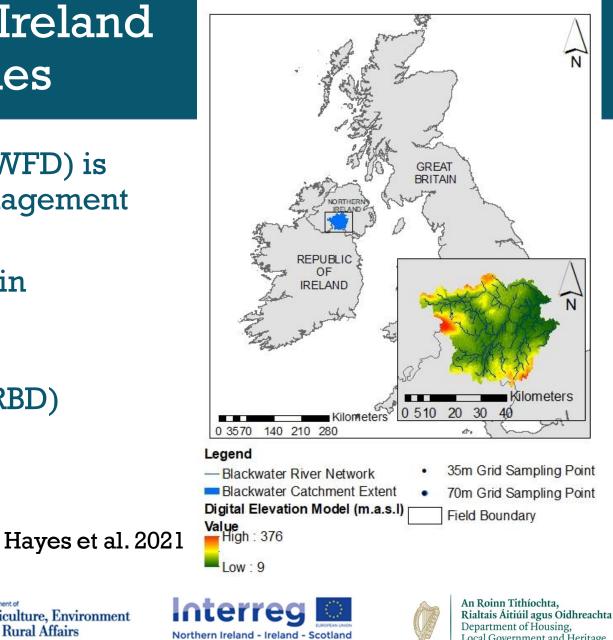
Community Actions for Resilient Ecosystems

AFBI Bushmills

- Seven research centres across NI
- Research Farm at AFBI Hillsborough
- Marine research vessel
- Agriculture, food, marine, veterinary sciences, plant sciences
- Agri Environment

Contents

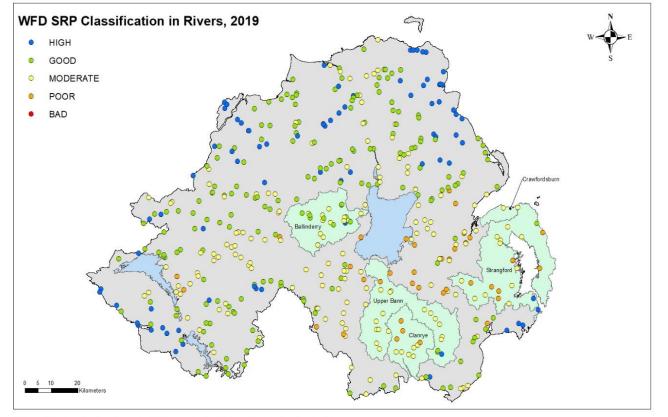
- Background: Water quality in NI and cross border water bodies
- Introduction to extensively managed grassland
- Loss of phosphorus from grassland soils
- CatchmentCARE project: New fertiliser guidelines for extensively
 managed systems
- Increasing the precision of farm nutrient management



Water Quality in Northern Ireland & Cross-Border Water Bodies

- In NI the Water Framework Directive (WFD) is implemented through River Basin Management Plans.
- NI shares three International River Basin **Districts with Rol**
- In this presentation I will focus on the Blackwater Catchment (Neagh-Bann IRBD)
- Tyrone, Armagh & Monaghan

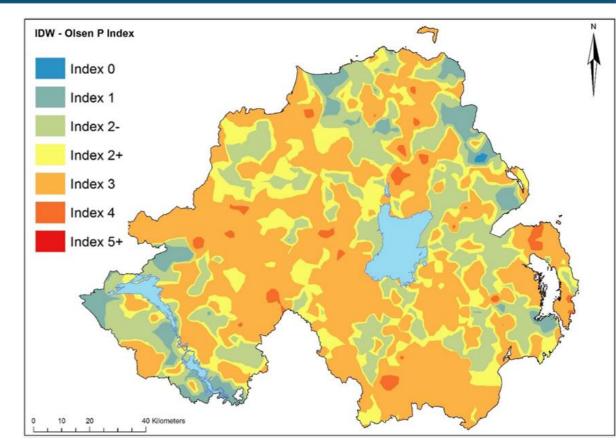
Local Government and Heritage



Water Quality in Northern Ireland & Cross-Border Water Bodies

- Water bodies (rivers, lakes & groundwater) are monitored continuously for chemical and ecological status and this data reported to the Commission
- In recent years there has been a slight deterioration in water quality
- 2019: 44% of river sites had SRP classification of moderate or poor
- 2012 2015: 34%
- Nearly a third of sites have deteriorated by one class for WFD SRP status

This is based upon Crown Copyright andis reproduced with the permission of Land & Property Services under delegated authority from the Controller of Her Majesty's Stationery Office, © Crown copyright and database right 2016 EMOU206.2 Northern Ireland Environment Acaency 2020



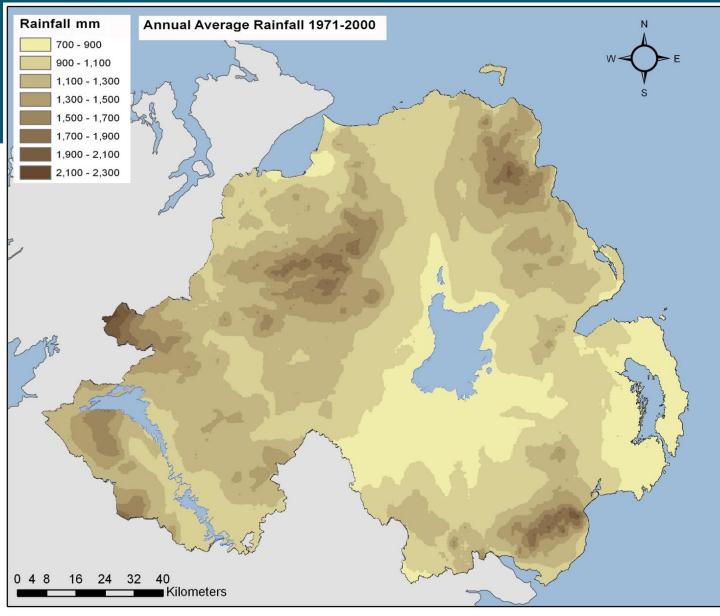
Agriculture, Environment and Rural Affairs

Farm and field management of phosphorus inputs

- Agricultural land acts as a point and diffuse source of phosphorus (P) loss into waterways
- Recent soil sampling schemes such as the EAA scheme showed that 50% of soils in NI contain high or surplus levels of soil P
- Soil P above what is required for agronomic production
- Increased risk of P loss. 940 tonnes of agricultural P are lost to water bodies each year

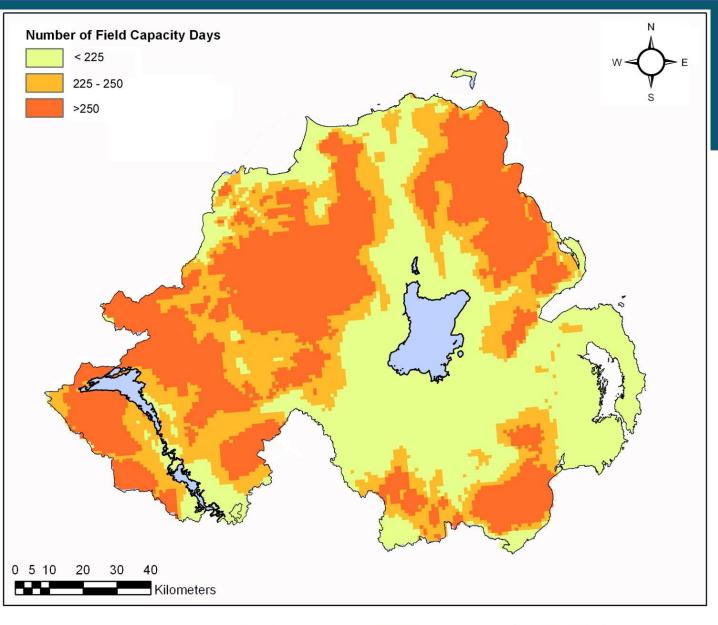
High Soil Phosphorus

- Historically there has been a tendency to over-apply P (above what is required for production)
- High slurry and chemical P applications
- The risk of nutrient loss from agricultural land is greater in certain conditions
- To reduce the risk of nutrient loss, environmental regulations have been enforced (Nutrients Action Programme)
- Closed period 39% reduction in SRP loss



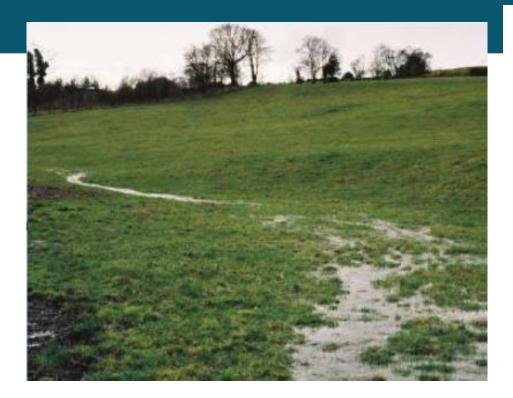
Climate

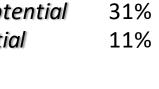
• High rainfall climate 1000 – 2000 mm rainfall annually



Saturated Soils

 Soils can be saturated or above field capacity for > 250 days per year





Runoff Risk - Spatial Variability


www.daera-ni.gov.ul

High Runoff Potential	58%
Medium Runoff Potential	31%
Low Runoff Potential	11%

European Regional Development Fund

D. Doody,

R. Cassidy,

R. Adams,

A. Higgins

Local Government and Heritage

Diffuse and point source pollution

Agriculture, Environment and Rural Affairs www.daera-ni.gov.uk

CatchmentCARE

- CatchmentCARE is an EUfunded project that aims to improve freshwater quality within the North Western and Neagh Bann international river basins.
- The project is focussed across three cross-border catchments, the Arney, Blackwater and Finn

Blackwater catchment 1,500 km2: Neagh-Bann IRBD Finn catchment 494 km2: North Western IRBD Arney catchment 304 km2: North Western IRBD

CatchmentCARE

- <u>**Aims:</u>** Development of a number of water quality improvement projects and installation of groundwater monitoring stations across the region</u>
- Project Partners:
- Donegal County Council (Lead)
- AFBI
- Inland Fisheries Ireland
- Loughs Agency
- Ulster University
- Armagh City, Banbridge & Craigavon Borough Councils
- British Geological Survey
- Geological Survey Ireland

CatchmentCARE

- Project funded under the EU Interreg VA Programme
- Budget €13,792,432
- Match funding of €2,068,865.37 provided by Government departments

Project Actions:

- A measurable impact on water quality
- Be transferable beyond the three catchments
- Contribute to a project legacy

Aims of Catchment CARE

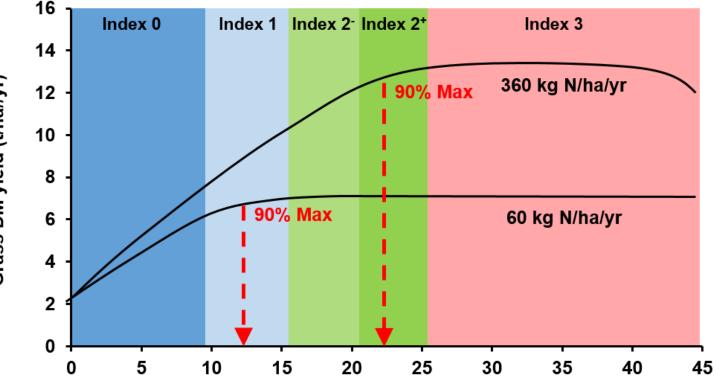
- Identifying strategies to manage phosphorus inputs at farm scale and individual field level
- Reduction in number of fields over-supplied with P
- Develop an evidence base that will help shape future regulations in relation to soil nutrient management
- Development of recommendations that are appropriate for cross border farms

Re-evaluating current fertiliser recommendations

- Current fertiliser recommendations favour high-production systems
- Grassland receiving high N inputs (fertiliser + manure over 300 kg N/ha/yr)
- High target yields 12 16 t DM/ha/yr in 3 silage cuts
- However, much of NI and RoI agriculture is not operating at this intensity
- Extensively managed livestock farms in NI generally have total fertiliser inputs less than 60 kg N/ha/yr and manure less than 120 kg N/ha/yr
- Expected yields 4 7 t DM/ha/yr through 1-2 silage cuts per year

Extensively managed grasslands

- A landscape which comprises a large proportion of the land area of NI and RoI
- Currently minimal published data assessing the P requirements of low-input extensive grassland
- Over-application of P to extensive systems could be making a significant contribution to P inputs into waterways



Liebig's Law of the Minimum

- Max yield determined by the most limiting nutrient
- In extensive systems the low N rate is generally the limiting factor
- Due to the low N input, max attainable yield may be 7 t DM/ha/yr
- Even if more P is applied, yield will not increase as the system is limited by N supply

Grass DM yield (t/ha//yr)

Grass DM yield vs soil Olsen-P at different N rates

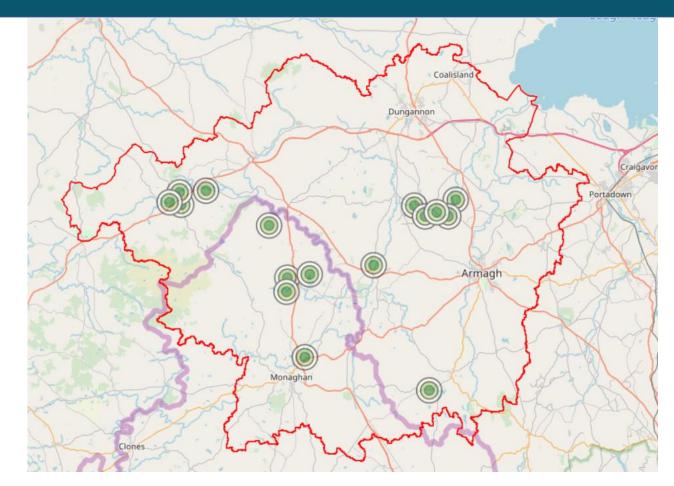
www.daera-ni.gov.u

Liebig's Law of the Minimum

- Where N input is low, P uptake and P requirement will be lower
- On an input of 60 kg N/ha/yr, an Olsen P Index of 1 may be sufficient
- For a higher N input system, 90% of max yield correlated with Index 2+

16 Index 1 Index 2⁻ Index 2⁺ Index 0 Index 3 14 DM yield (t/ha//yr) 360 kg N/ha/yr 90% Max 12 10 8 90% Max 60 kg N/ha/yr 6 Grass 4 2 0 10 15 20 25 30 35 5 40 45 0

Grass DM yield vs soil Olsen-P at different N rates



Soil Olsen-P (mg P per litre of soil)

Tackling Legacy Soil P in Catchment CARE

- High levels of legacy soil P, especially where more P is applied than required for production
- Catchment CARE aims to refine the nutrient advice given to farmers
- Farm specific advice based on farm activity level
- 17 farms selected in the Blackwater cross-border catchment

Blackwater Catchment

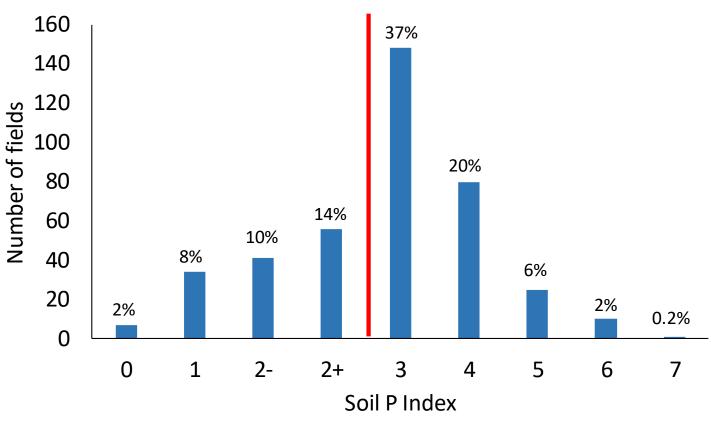
- Blackwater catchment 1,500 km2: Neagh-Bann International River Basin
 District
- Tyrone, Armagh & Monaghan
- 90% of land use as agriculture (diary, beef & sheep)
- Geology: Carboniferous sandstone, limestone, shale and mudstone overlaid by pro-glacial boulder till
- Soils: poorly draining with a seasonally perched water table promoting saturation-excess runoff
- High winter rainfall, high runoff risk, low water storage capacity and poor permeability: factors which elevate the diffuse pollution risk

Nutrient Management Component of CC

- Two main parts:
- 1. Mapping soil P content of all fields on 17 farms. Preparing nutrient management plans for farmers
- 2. Evaluating P recommendations for extensively managed grasslands within the revised Nitrates Action Programme (NAP)

Soil Sampling of 17 farms (Jan – Mar 2019)

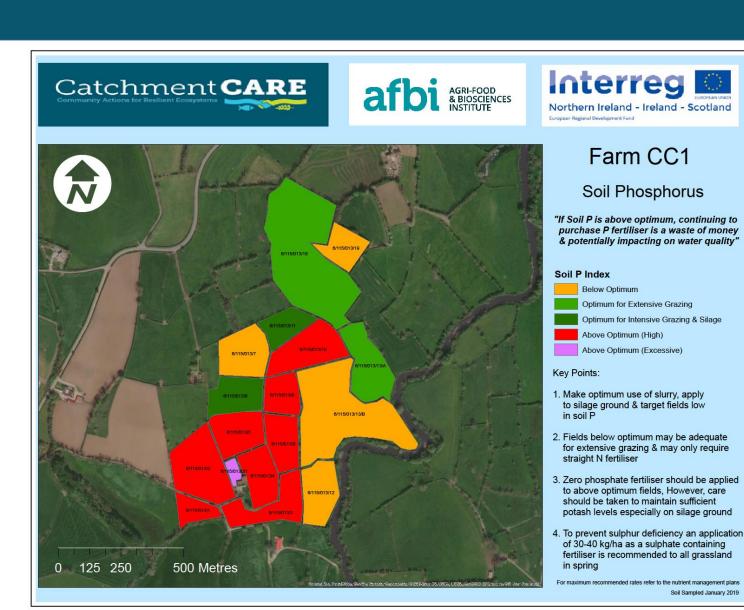
400 fields sampled



Soil Sampling of 400 fields

- 66% of fields sampled contained excessive soil P
- Above the agronomic optimum Index 2
- Higher than the national average

Soil P Index of 400 fields in Blackwater Catchment

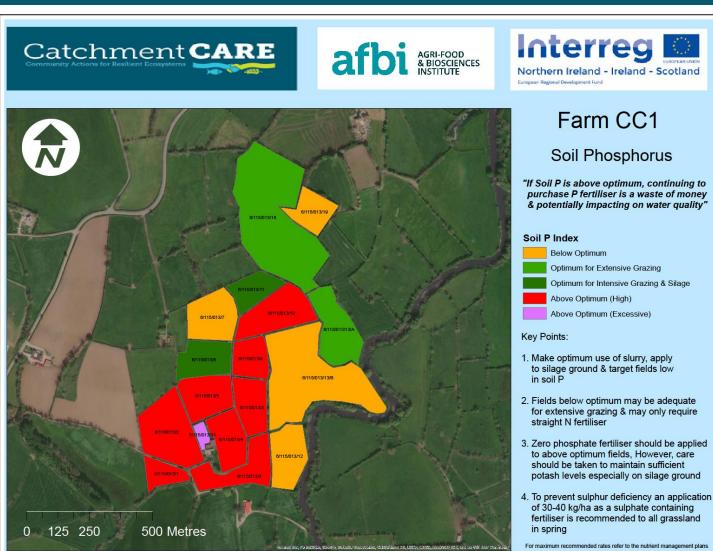


Knowledge Transfer

- Production of nutrient management plans for 17 farms
- Red = Above optimum
- Green = Optimum
- Yellow = Below Optimum

Knowledge Transfer

- Calculation of farm P balances
- Recommendations for improved fertiliser and slurry management



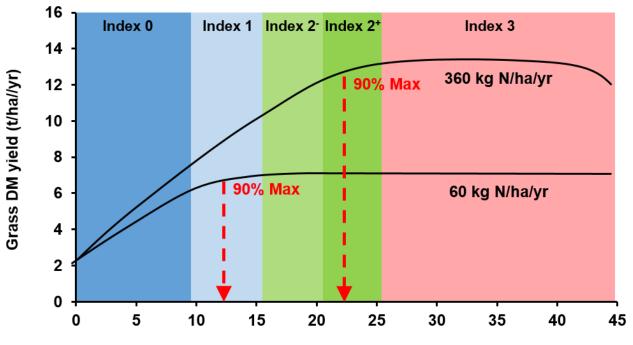
Knowledge Transfer

 In response to the nutrient plans, a 42% reduction in P applied through inorganic fertiliser has been recorded

Soil Sampled January 2019

Grass silage quality and nutrient balance

• Reassurance that grass is receiving sufficient nutrients



Evaluating P recommendations for extensively managed grasslands within the revised Nitrates Action Programme (NAP)

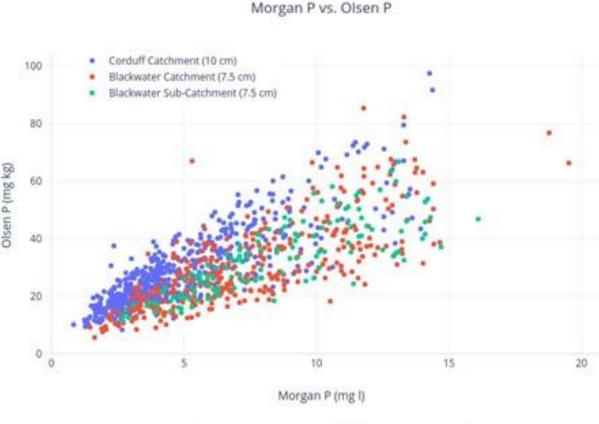
- Based on the lower N inputs to extensively managed systems and lower target yields, new P recommendations were formulated for extensively managed grassland
- Included in the 2019 2022 Nitrates Action Programme and P Regulations

Grass DM yield vs soil Olsen-P at different N rates

Soil Olsen-P (mg P per litre of soil)

Revisions to the 2019-22 NI Nutrients Action Programme and P Regulations

Index	Olsen P UK	Status	Morgan's P Rol	Status
0	0-9	Deficient		
1	10-15	Low	0 - 3	Very low
2-	16-20	Optimum for extensive grasslands	3.1 - 5	Low
2+	21–25	Optimum for intensive grasslands		
3	26-45	High	5.1 - 8	Medium (Optimum)
4	46 - 70	Excessive	≥8	High



Comparison between current NI and RoI Olsen and Morgan's extractable soil tests

- Two different soil P tests operating in close proximity in cross border areas
- Do the recommendations derived from each test vary significantly
- Could choice of soil test impact on water quality in cross border areas e.g. difference between Index 3 and Index 2

Vero et al. 2021

Interreg Contact of the Internet Include - Ireland - Scotland

Revisions to the 2019-22 NI Nutrients Action Programme and P Regulations

NI System	Fertiliser recommendations kg P2O5/ha					
	0	1	2-	2+	3	4
Grass establishment	80	65	50	30	0	0
Grazed grass (whole season)	50	35	20	0	0	0
First cut silage	70	55	40	0	0	0
Нау	55	43	30	0	0	0

Target index for grazed fields Index 2-, Lower P fertiliser inputs Silage fields target Index 2+, Higher N inputs, Higher P inputs

Further details of all the measures can be found in the full Guidance Document at <u>www.daera-ni.gov.uk</u>

Agriculture, Environment

and Rural Affairs

NEA Environment

P Rate Experimental Plots

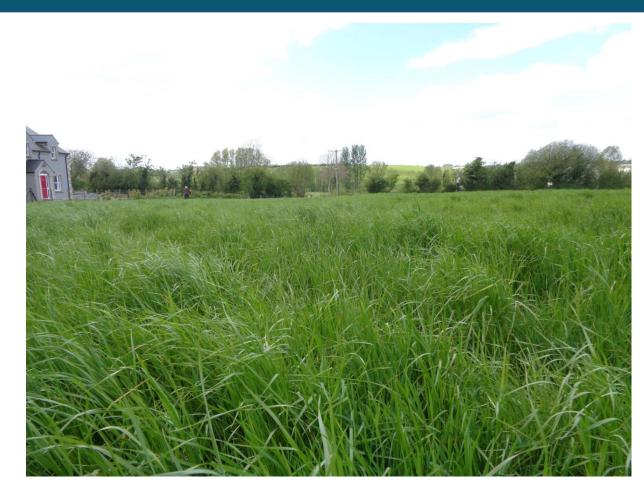
Treatments: 3 rates P plus zero P control plots 6 reps of each = 60 plots Grass Yield 2 cuts per year; Grass Quality

Results: Farm 1 Low soil P (Index 1)

P Applied	Annual yield (2 cuts) t/ha	
	2019	2020
Grazing 35 kg P2O5 / ha whole season	7.3	4.0
Silage 1st Cut 55 kg P2O5/ha 2 nd Cut 20 kg P2O5/ha	7.7	4.7
No P Applied	6.9	3.5

Results: Farm 2 Optimum soil P for grazing (Index 2-)

P Applied	Annual yield (2 cuts) t/ha	
	2019	2020
Grazing 20 kg P2O5 / ha whole season	6.9	7.2
Silage 1st Cut 40 kg P2O5/ha 2 nd Cut 15 kg P2O5/ha	7.2	7.8
No P Applied	6.5	6.4



Results: Farm 3 Optimum soil P for grazing (Index 2-)

P Applied	Annual yield (2 cuts) t/ha	
	2019	2020
Grazing 20 kg P2O5 / ha whole season	6.3	6.3
Silage 1st Cut 40 kg P2O5/ha 2 nd Cut 15 kg P2O5/ha	7.3	8.3
No P Applied	5.8	5.0

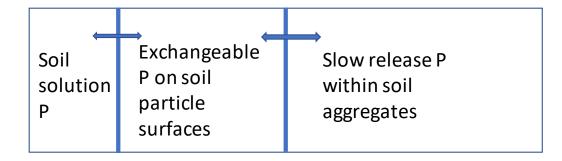
Discussion

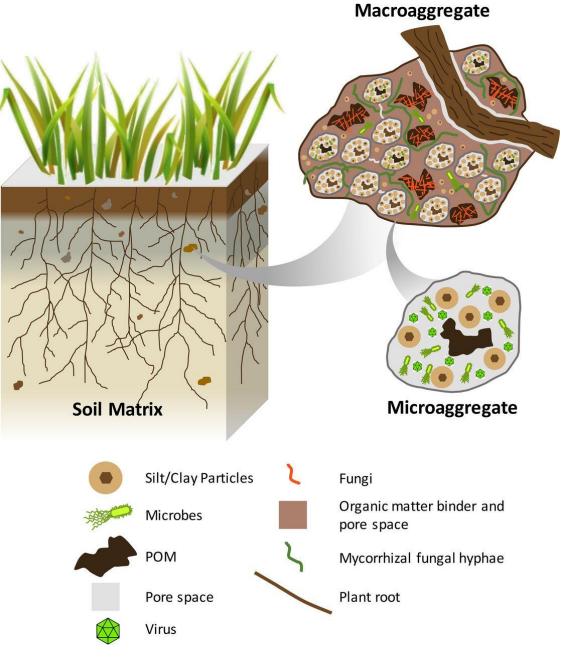
- The revised P recommendations for extensive grassland are appropriate
- No P deficiency was found in grass samples collected from the plots receiving P
- Some signs of grass P deficiency in control plots where no P applied
- Important to apply P if Index 0, 1, 2-, to protect animal health in a grazing system and to ensure good silage yields

Discussion

- Supporting literature: Nawara et al. 2018 Belgium showed that the higher the N input, the greater the growth and demand for P also increases. P deficiency would be more common in high N-input systems
- For high P soils (Index 3 4+) need to reduce these to Index 2 (or Index 1)
- Previous studies (Bailey, 2015) have demonstrated that it can take up to 13 years for an Index 4 soil to decline to Index 2 under a zero-P grazing regime
- 8 years under a zero-P silage regime

Nawara et al. 2018 European Journal of Soil Science 69,804-815





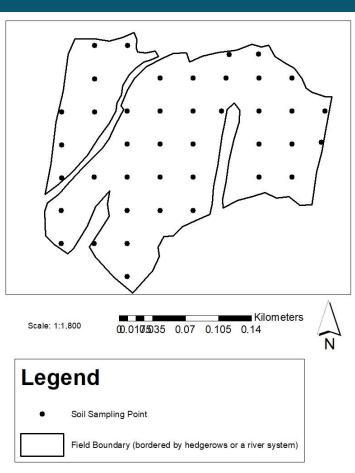
Plant available P

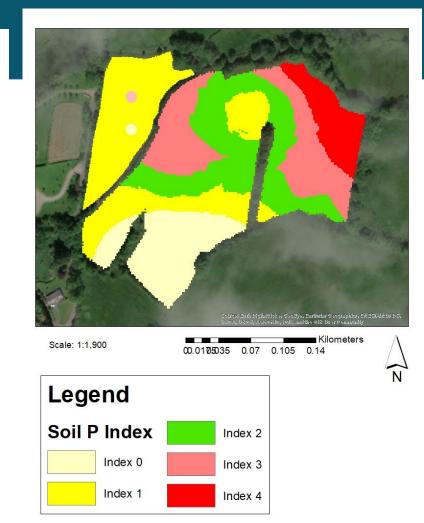
Reducing P inputs while meeting grass demand for readily available P, particularly in silage systems during rapid growth in spring.

ASM Applied & Environmental Microbiology Journal

Targeted in-field management and new technology

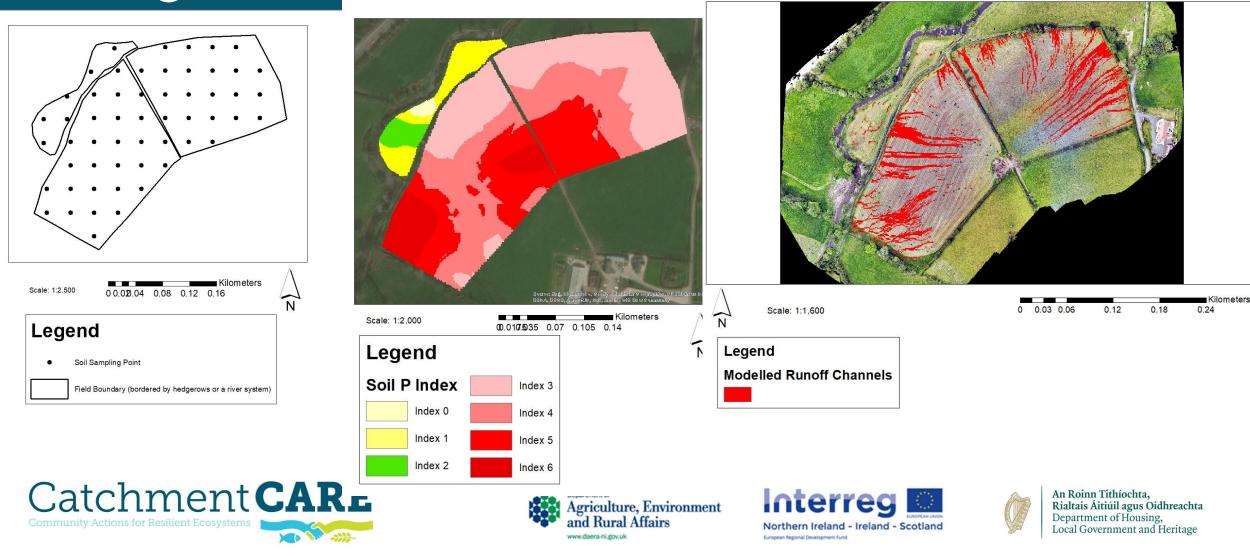
- Fields are generally managed as uniform units
- Research has shown substantial sub-field scale variability in plant nutrients P, K, Mg, S, nitrogen availability and soil pH
- Sub-field scale monitoring is currently too costly to implement widely but new technology is presenting opportunities





Targeted in-field management

Hayes et al 2021



Targeted in-field management

- Farm-specific nutrient management is essential for reducing nutrient surpluses
- Field scale nutrient management plans are very effective communication tools
- Extensively managed grasslands may still maintain productivity at lower P inputs

Catchment CARE thanks the 17 farmers in the Blackwater Catchment who are involved in this study

