Conservation Grazing in the Uplands

Kilian Kelly

School of Science, Technology, Engineering and Mathematics, Munster Technological University

> Teagasc Signpost Series Friday August 12th 2022

Ollscoil Teicneolaíochta na Mumhan Munster Technological University What is conservation grazing?

Upland habitats & species – threats, conservation status (briefly)

Conservation Grazing research in Kerry

Grazing and wildlife conservation

- Use of grazing animals to maintain and enhance biodiversity
- A tool for managing habitats
- Focus on semi-natural landscapes with domestic animals
- Dunes Uplands Woodlands & Traditional Orchards Heaths Grasslands
- Why use grazing for conservation?
 - Many of our semi-natural landscapes have developed with grazing
 - Some habitats benefit from grazing to maintain open structure
 - May be habitat or species focussed
 - In Ireland, general succession to woodland unless some management is in place (note: succession to woodland is often desirable and may be a management goal)

Burren winterage

Buffalo, Pembrokeshire

Traditional Orchards in the Wyre Forest

Wide range of species and breeds depending on 'the job'

- Site management involves selecting appropriate species & breed, managing stocking rates, extensive grazing, mob grazing
- Dependent on habitat availability and distribution of habitat patches
- Cattle e.g. Shorthorns, Belted Galloway, Dexter, Highland, Irish Moiled, Kerry, North Devon
- Sheep e.g. Hebridean, Jacob, Soay, Cotswold
- Equines e.g. Dartmoor, Fell Pony, Shetland, Koniks
- Goats and Pigs

How do grazers influence habitats?

- selective defoliation (physical form/anatomy of plants plant chemistry – seasonality)
- 2. poaching
- 3. dunging & urine
- Effects on ecosystem processes such as productivity, distribution of nutrients
- It can cause **cascading effects on the** structure of ecosystems
- Influences structure and species composition of habitats, with consequences for plant animal communities (e.g. invertebrates & birds)

Physical attributes & impact on biodiversity

Physiological differences

- -> differences in grazing behaviour
- -> differences in ability to be selective

• Differences in ability to be selective has impacts on sward characteristics and biodiversity

- **Sheep** are dominant herbivores in the Irish uplands
- Small mouths and highly curved incisors selective feeders
- Graze close to ground and bite off desirable portions of the plants
- Greater ability than cattle to select high quality plant parts such as flowers, pods and young shoots

- Cattle use their tongues and dental pad when grazing
- Pull tufts of vegetation, leaving tussocks.
- This pulling and tearing = low ability to be selective
- Can be beneficial in the control of dominant upland grasses species such *Molinia caerulea*

The Uplands

- Land over 150 m (almost 1/3rd of Ireland)
- Above the limits of enclosed farmland
- Often a distinct vegetation boundary
- Used for rough grazing
- Largest expanses of semi-natural landscapes
- Scenic beauty, recreation, working landscapes
- And important for conservation
 - 14 Annex habitats (Habitats Directive)
 - 40% of our SAC network
 - Many rare and threatened species

Annex I habitats occurring in the Irish uplands. From National Survey of Upland Habitats (Perrin et al., 2014)

- 1. Northern Atlantic wet heaths with *Erica tetralix*
- 2. European dry heaths
- 3. Alpine and boreal heaths
- 4. Species rich Nardus grassland
- 5. *Blanket bog
- 6. Transition mires and quaking bogs
- 7. Depressions on peat substrates of the Rhyncosporion
- 8. Alkaline fens
- 9. Siliceous scree of the montane to snow levels
- 10. Calcareous and calcshist screes of the montane to alpine levels
- 11. Calcareous rocky slopes with chasmophytic vegetation

Habitats occur in mosaic

Habitats Directive Article 17 Reports The Status of Protected Habitats in Ireland 2013 & 2019

Blanket Bog (7130)

Dry Heath (4030)

Conservation Status

NPWS (2013, 2019). The Status of EU Protected Habitats and Species in Ireland. Habitats Assessments Volume 2.

Conservation Grazing in Kerry

Identify home range and habitat use of cattle

Assess their impact on upland habitats

Provide management recommendations

Outline

Grazed the site with Dexters from July – September

Identified home range and habitat selection of cattle – **GPS tracking**

Assess their impact on upland habitats

THE DINGLE PENINSULA

- Mt Brandon Nature Reserve: 462 hectare state-owned reserve
- Unenclosed upland landscape peat soils on sandstone
- Blanket Bog Wet and Dry Heath Grasslands Scree Slopes Sea Cliffs – Eroding Rivers Snowdon. There is a galaxy of mossy saxifrages here, very
- Wet Windy Exposed Atlantic

difficult to disentangle, and many other rare plants; Ravens and Peregrines haunt the cliffs, while Choughs prefer the coastal grounds.

GPS tracking

30 animals July - late Sept

Selected animals fitted with tracking units (www.followit.se)

GPS fix every 2 hours

Analysis: GPS study

- 1. Estimate Home Range using GPS data
- 2. Habitat Selection using home range estimates and habitat data

Habitat Selection using a two-step approach

I. Compare habitat composition of home ranges (i.e. *use*) against overall *availability* in the study area

II. Compare habitat at individual locations (*use*) against the various estimates of home range (*availability*)

Results

Home Range

• Mean distances travelled

Summary stats:

- Over season = 144.23 km (±20.18)
- Per day = 1.37 km (± 0.29)
- Per week = 9.71 km (± 2.11)

Legend

2015 GPS Locs
 2015 MCP

2015 OREP

Results – Habitat Selection

Habitat content of study area and of home ranges 2013 to 2015 using OREPs

i.e. Broad Selection Level, or Johnsons (1980) "Second Order Selection"

Results – Habitat Selection Using Jacobs Index

Habitat preferences

*Jacobs Index: D = (r-p)/[(r+p)-2rp], where r is the proportion of habitat used and p the proportion of habitat available.

-1 indicates complete avoidance and +1 indicates exclusive use (A = Avoid, P = Prefer).

(Jacobs, J. 1974. Quantitative measurement of food selection – a modification of forage ratio and Ivlev's electivity index. *Oecologia (Berl.)* 14: 413-417).

Vegetation Sampling Methods

- 2 x 2 m quadrats
- % cover of each species
- Total cover of layers
- Heights of layers
- Environmental variables

Conservation Status Assessments

- 1. Range
- 2. Area
- 3. Structure and Functions
- 4. Future Prospects

T F	he Status of EU Protected IABITATS AND SPECIES in Ireland
C	onservation Status in Ireland of Habitats
at	ad Species listed in the European Council
D	irective on the Conservation of Habitats,
Fl	ora and Faune 92/43/EEC
Cu	ntus MPMC (2013) The States of Protocol (17) Holdston and Spectra to Johnsol
Cu	webs Vickana 1. Uppel Johnsol, Mattand Party A. VISBA: Services

Conservation Status	Favourable (F)	Unfavourable Inadequate	Unfavourable Bad	
		(U-I)	(U-B)	
Criteria	No stop failures	1 – 25% of stops failed	> 25% of stops failed	

Table 2 Applicable monitoring criteria for Northern Atlantic Wet Heath with Erica tetralix.

	Criterion	Scale of assessment
1	Erica tetralix present	20 m radius
2	Cover of positive indicator species [*] \geq 50%	$4 m^2$
3	Total cover of: <i>Cladonia</i> sp. <i>Sphagnum</i> sp., <i>Racomitrium languinosum</i> and pleurocarp mosses ≥ 10%	4 m^2
4	Cover of ericoid species $\geq 15\%$	4 m ²
5	Cover of dwarf shrub species < 75%	$4 m^2$
6	Cover of neg. indicators: A. capillaris,	4 m^2
	H. lanatus, R. repens, collectively < 1%	
7	Cover of non-native species < 1%	4 m ²
8	Cover of non-native species < 1%	Vicinity
9	Cover of <i>Pteridium aquilinium</i> < 10%	Local vicinity

*B. chrysocoma, C. vulgaris, Carex sp., D. albicans, Drosera sp., E. tetralix, E. angustifolium, N. ossifragum, noncrustose lichens, P. sylvatica, P. purpurea, P. serpyllifolia, P. erecta, Sphagnum spp., S. pratensis, T. germanicum.

Conservation Status Assessments

Plot	Plot code and comment	Grazing Level (KDE)	2013	2014	2015	Comment (reasons for failed stops)
1	u1/whex. Exclosure.	0 (none)	U-I: 13% (2/15 fails)	F	U-I: 13% (2/15 fails)	 Cover of positive indicator sp. Bryophyte cover Ericoid cover
2	u2/whvex. Ungrazed	0 (none)	Not sampled	U-I: 13% (2/15 fails)	Favourable	 Cover of negative indicators (A. capillaris = 5%)
3	g1/wh15. Grazed plot	5% (low)	U-I: 20% (2/10 fails)	F	F	Bryophyte cover Cover A. capillaris (neg' ind') Ericoid cover
4	g2/wh60	44% (med)	U-I: 20% (2/14 fails)	F	F	Cover of bare ground = 20% in two 2013 plots
5	u3/dhvex. Reclassified from DHex.	0 (none)	F	F	F	
11	g5/bb51. Reclassified as WH quadrats from a BB plot	55% (medium)	U-I: 11% (1/9 fails)	F	F	 One stop fail for bare soil and ericoid cover
12	g6/bb02. Reclassified WH	16% (low)	Not sampled	U-I: 13% (2/15 fails)	F	Bare ground Bryophyte cover
16	g9/wg69 Transition habitat Valley floor	90% (high)	U-B: 36% (5/14 fails)	U-B: 50% (7/14 stop fails)	U-B: 43% (6/14 stop fails)	 Inadequate ericoid cover Negative indicator species (A. capillaris), Bryophyte cover J. effusus cover too high
17	g10/wg63 Transition habitat from WG to WH to DH. Valley floor	90% (high)	U-I: 53% (8/15 stop fails)	U-B: 35% (3/8 stop fails).	U-I: 13% (1/8 stop fails)	Cover of negative indicators (<i>A. capillaris</i>) Cover of positive indicators inadequate Cover of ericoid inadequate Inadequate bryophyte cover

Northern Atlantic Wet Heath with *Erica tetralix:* trending towards favourable European dry heath: being maintained in favourable conservation status Blanket bog: being maintained in favourable conservation stutus

NOTE: the site was in good conservation status at the beginning of the study

Summary

- Wet Grassland was selected most
- Blanket Bog and wet heath were selected least
- Cattle appear to target and reduce cover of Molinia caerulea
- No detectable increase in dwarf shrub cover in this study
- Plant community richness and diversity unchanged in period of study
- Trends in the conservation status of Annex habitats is towards favourable at current stocking densities at this site
- A return to cattle grazing may have a role to play
- Management plans for uplands should consider habitat availability and distribution of patches

Thank you