Nitrogen cycling differences associated with grassland sward composition reveal promising N loss mitigation strategies at key times of the year

> Dr Conor Bracken WCSS Glasgow - 01st August 2022

Bracken, C. J., Lanigan, G. J., Richards, K. G., Müller, C., Tracy, S. R. and Murphy, P. N. C.

UCD School of Agriculture and Food Science

> Background Experimental Design Materials & Methods > Results > Conclusions > Further Research

JUSTUS-LIEBIG-

Agr.

N₂O

+7.23%

from

2014 -

2020

Background

- Challenging Policy Objectives
 - >Increase agricultural output

- Reduce GHG + Better water quality + Enhance biodiversity
- > Nitrogen loss from agriculture to environment
 - $>N_2O$ emissions
 - $> NO_3^-$ leaching
- Better understanding of soil N cycle
 - >Improve management advice

>Implement better environmental practices

 H₁: Cumulative and seasonal N losses (N₂O and leached N) would be lower from T2, T3 and T4 than T1; possibly linked to specific differences in soil N cycling

Materials & Methods

• N₂O Concentration: t(0), t(30), t(60)

•
$$F_{(daily)} = (\Delta C/\Delta t) \times ((M \times P)/(R \times T)) \times (V/A)$$

•
$$\delta^{15}N_{(soil)}^{x} = (\delta^{15}N_{(soil)}^{x} \times N_{2}O_{(sample)} - \delta^{15}N_{(air)}^{x} \times N_{2}O_{(air)})$$

 $\div (N_{2}O_{(sample)} - N_{2}O_{(air)})$
• $SP = \delta^{15}N^{\alpha} - \delta^{15}N^{\beta}$
15/14N-15/14N-O
• $F_{N} = SP_{X} - SP_{D}/SP_{N} - SP_{D}; \quad F_{D} = 1 - F_{N}$

Bracken et al., 2021. Development and verification of a novel isotopic N₂O measurement technique for discrete static chamber samples using Cavity Ring Down Spectroscopy. Rapid Communications in Mass Spectrometry. 35, e9049. <u>https://doi.org/10.1002/rcm.9049</u>.

Bracken et al., 2021. Source partitioning using N₂O isotopomers and soil WFPS to establish dominant N₂O production pathways from different pasture sward compositions. Science of The Total Environment, 781, 146515. <u>https://doi.org/10.1016/j.scitotenv.2021.146515</u>

UCD School of Agriculture and Food Science

- Temporal data
- N₂O emissions & intensity
- Seasonal N losses
- ▷ ¹⁵N₂O source partitioning

Figures temporarily withheld whilst under review

Conclusions

> MSS are a less intensive & more sustainable system > N losses linked to chemical fertiliser application Fertiliser N offset with BNF may not reduce cumulative N. losses proportionately > Less synthetic fertiliser in Spring minimises N loss \succ Ribwort plantain associated with lower F_{N} > Limitations: Short-term, Small Scale, Single Soil Type

JUSTUS-LIEBIG-
UNIVERSITA
GIESSEN

Further Research

GIESSEN

Thank You

- Field & lab technicians
- PhD supervisors
- Research collaborators
- Funding bodies

Mas

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

