Optimising soil pH and phosphorus can reduce N₂O emissions from grassland soils Karl G. Richards¹, O. Žurovec¹, R.M. O'Neill^{1,2}, D.P. Wall¹, F.P. Brennan¹, D.J. Krol¹, P.J. Forrestal¹, F. Renou-Wilson², C. Müller² & G.J. Lanigan¹ contact email: <u>karl.richards@teagasc.ie</u>

1. INTRODUCTION:

The effect of soil pH and soil test phosphorus (STP) on crop yields is well understood and famers around the world receive agronomic advice on how to improve the soil fertility on their farms for optimal crop growth. The effect of soil fertility on emissions of greenhouse gases such as nitrous oxide (N₂O) from fertilisation is less well understood (O'Neill et al. 2020). **2. OBJECTIVES:**

To quantify the effect of soil pH and soil phosphorus on fertilizer derived nitrous oxide (N_2O) emissions from grassland soils.

4. RESULTS

Soil pH (Fig. 1)

- Significant effect of soil pH, cumulative N₂O emissions decreased with increasing pH .
- CAN emission factor decreased from 2% pH 5 to 1.2% pH 6.9.

Soil Phosphorus (Fig. 2)

- N₂O emissions very low in absence of glucose
 - N₂O emissions decreased with increasing soil P

 Improving soil fertility to agronomic optimums (pH & P) can significantly reduce N₂O emissions in denitrifying temperate grassland soils.

Department of Agriculture,

ood and the Marin

eagasc

ERA-GAS

AGRICULTURE AND FOOD DEVELOPMENT AUTHOR

 Effect of soil fertility on N₂O & CO₂ needs to be investigated further across a wider range of soils and cropping systems to optimise soil C, N and P cycles

3. METHODS

- Experiments used long term pH and P grassland trials in Johnstown Castle
- **N₂O** static chambers Measurements were made frequently after fertilizer application over 12 months (pH) and 3 months (P).

Soil pH experiment:

 4 pH levels, cut grassland, 300 kg N ha⁻¹ as Calcium ammonium nitrate (CAN) in 8 splits.

Soil P experiment:

- 3 soil P levels (0, 15 and 45 kg P ha-1 yr-1), plots received 80 kg N ha-1 in 2 splits.
- Cumulative N₂O emissions were analysis using ANOVA in R.
- Both experiments have been published (Žurovec et al. 2021 and Gebremichael et al. 2022)

Fig 1– The effect of soil pH on cumulative N₂O emissions from cut grassland receiving 300 kg N ha⁻¹ as CAN (Žurovec et al. 2021).

Fig 2 – Effect of long term soil phosphorus fertilisation on cumulative N_2O emissions (Gebremichael et al. 2022).

References

Gebremichael et al. 2022. Scientific Reports, 12 1-13 O'Neill et al. 2021. Soil Biology and Biochemistry, 142, p.107726. Žurovec et al. 2021. Agriculture, Ecosystems & Environment, 311, p.107319

Acknowledgements

This research was financially supported under the National Development Plan, Research Stimulus Fund, Department of Agriculture, Food and the Marine (Grant number RSF15S655), and under the ERA-GAS 2016. FACCE ERA-GAS has received funding from the European Union's Horizon 2020 research & innovation programme (Grant agreement No 696356)