

GHG emissions and agriculture

Laurence Shalloo, Jonathon Herron, Ben Lahart and Hazel Costigan

> Teagasc, AGRIC, Moorepark, Fermoy, Co Cork. Phone: 025 42 306 Email: Laurence.shalloo@teagasc.ie

Grass fed – Protein efficiency VistaMilk

Proteins produced (whole carcasses, milk)

Total Efficiency =

Proteins consumed by livestock (total feed)

Human edible proteins produced

Human edible proteins consumed

(adapted from Wilkinson, 2011; Ertl et al, 2015)

→ What is human-edible ?

Laisse et al., 2018

2

Grass fed – Protein efficiency VistaMilk

3

Irish Emissions (UNFCCC)

SC AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

4

Overview

Where we are now

- Emission reduction technologies
- Carbon Budgets
- Climate Neutrality

Carbon footprint Model updates

Herron et al., 2022

Current and Target systems

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Overview

Where we are now

Emission reduction technologies

- Carbon Budgets
- Climate Neutrality

EBI - Environmental footprint of the Next Generation Herd

	Elite (€181)	NatAv (€80)
CO ₂ -eq, tonnes / ha	16.2	16.3
FPCM, kg	16879	15326
CO ₂ -eq, kg / kg FPCM	0.96	1.06
€10 increase in EBI = 1% less CO ₂ -eq kg / kg FPCM		

J. Dairy Sci. 104:8039-8049 https://doi.org/10.3168/jds.2020-19618

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association⁶. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Greenhouse gas emissions and nitrogen efficiency of dairy cows of divergent economic breeding index under seasonal pasture-based management

B. Lahart, ¹² L. Shalloo, ¹ J. Herron, ¹ D. O'Brien,² R. Fitzgeraid, ¹ T. M. Boland, ² and F. Buckley¹* ¹Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland ³School of Agriculture and Food Science, University College Dublin, Beffield, Dublin 4, D04 N2E5, Ireland ³Crops, Environment, and Land Use Research Centre, Teagasc, Johnstown Castle, Co. Wexford, V35 TC97, Ireland

Feed and Productivity

- Increasing productivity from grass
 - >25kg MS per lactation = 2.1% per kg FPCM
- Reducing the levels of feed supplemented while holding milk production
 - <250kg per cow = 1.4%</p>
- Reducing replacement rate
 - 20% to 16% = 2.2%

Nutrients

- Reduced Chemical N
 - Soil Fertility, Clover, LESS
 - -<25kg N = 2.5%
- CAN Versus Urea based fertiliser
 - Four fold difference in emissions
 - Protected urea for ammonia emissions
 - Full CAN to Urea = -8.7%

Overview

- Where we are now
- Emission reduction technologies
- Carbon Budgets
- Climate Neutrality

Achieving Sectoral Target

- Agricultures Target Reduction 21.7% to 30% 2018 agricultural emissions 22.034m t Movement from AR4 to AR5 ٠ The GWP value for Methane 25 to 28 The GWP value for Nitrous Oxide 298 to 265 2018 emissions recalculated to be 23 m t Target reductions Between 5 and 7 m t (21.7% to 30%) • Three categories of reduction
 - Currently available technologies from original MACC (Current technologies)
 - 2 million t
 - Research close to delivery and activities not included in original MACC
 - 1.5 million t
 - Achieving the balance .

•

1.5 to 3.5 million t

Achieving the balance – Research Distance to target 1.5 to 3.5 million tonnes

- Enteric methane emission factor
 - Current value 6.5% of GEI at grazing
 - Yan et al., for grass silage (Kennedy data, Substantially lower)
 - Research data
 - O Neill et al., (2011) 5.74% to 5.93%
 - O Neill et al., (2012) 7.70% to 7.98%
 - Wims et al., (2010) 5.4% to 7.4%
 - Jiao et al., (2014) 5.3% to 5.9%
 - Hynes et al., (2016) 5.6%

Achieving the balance – Research Distance to target 1.5 to 3.5 million tonnes

- Enteric methane emission factor
 - Current value 6.5% of GEI at grazing
 - Yan et al., for grass silage (Kennedy data, Significantly lower)
 - Research data
 - O Neill et al., 2011) (5.74% to 5.93%
 - O Neill et al., (2012) 7.70% to 7.98%
 - Wims et al., (2010) 5.4% to 7.4%
 - Jiao et al., (2014) 5.3% to 5.9%
 - Hynes et al., (2016) 5.6%
- Feed additives
 - 3NOP showing promise in indoor systems (circa 30%)
 - Early life 3NOP showing promise
 - Will it work at pasture?
 - Asparagopsis
- Zelp
- Breeding
- System

