

Strategies to achieve Climate Neutrality in Agriculture and the Land Use sector

Laurence Shalloo, Jonathon Herron, Ben Lahart and Hazel Costigan

Teagasc, AGRIC, Moorepark, Fermoy, Co Cork. Phone: 025 42 306 Email: Laurence.shalloo@teagasc.ie

Grass fed – Protein efficiency

Human edible proteins produced

Human edible proteins consumed

(adapted from Wilkinson, 2011; Ertl et al, 2015)

→ What is human-edible ?

Laisse et al., 2018

2

Grass fed – Protein efficiency Net Protein Efficiency - Current Scenario

ASA Conference September 8th 2022

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Grass fed – Protein efficiency

Carbon footprint Model updates

J. Dairy Sci. 105:5849–5869

https://doi.org/10.3168/jds.2021-21499

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Life cycle assessment of pasture-based dairy production systems: Current and future performance

Jonathan Herron,¹* Donal O'Brien,² and Laurence Shalloo¹ ¹Teagasc, Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302

²Teagasc, Environment, Soils and Land Use Department, Crops Environment and Land Use Research Centre, Johnstown Castle, Wexford, Ireland Y35 TC97

- Enteric methane emission factor
 - Current value 6.5% of GEI at grazing
 - Yan et al., for grass silage (Kennedy and Costigan data, Substantially lower)

Study	Method	Ym (%)
Wims et al. 2010	SF6	5.9
Ferris et al., 2020	SF6	4.9
Hynes et al., 2016	Chamber	5.6
Lahart et al., 2022	Greenfeed	5.3
Jiao et al., 2014	SF6	5.6
Foley et al., 2008	SF6	6.3
Lovett et al 2005	SF6	5.64
Hidalgo et al 2014	SF6	6.78
Mean		5.75
SD		0.58
CV%		10

Inventory Model calculation 285g/day

				Р
ltem	High quality	Low quality	S.E	Treat
Bodyweight (kg)	630	606	13.66	0.195
BCS (1-5)	3.36	3.35	0.064	0.897
DMI (kg/DM/cow)	12.78	8.93	0.598	0.001
CH₄ (g/day)	254	213	7.123	0.001
CH₄ (g/kg DMI)	21	26	1.217	0.008

Kennedy et al., 2021

Carbon footprint Model updates (Version 5 based on current research)

- Enteric methane emission factor
 - Current value 6.5% of GEI at grazing
 - Yan et al., for grass silage (Kennedy and Costigan data, Substantially lower)
- Feed additives
- Manure
 - Emission factors
 - Technologies
- Genetics
 - EBI

ASA Conference September 8

EBI - Environmental footprint of the Next Generation Herd

	Elite (€181)	NatAv (€80)		
CO ₂ -eq, tonnes / ha	16.2	16.3		
FPCM, kg	16879	15326		
CO ₂ -eq, kg / kg FPCM	0.96	1.06		
€10 increase in EBI = 1% less CO₂-eq kg / kg FPCM				

Greenhouse gas emissions and nitrogen efficiency of dairy cows of divergent economic breeding index under seasonal pasture-based management

B. Lahart.^{1,2} L. Shalloo,¹ J. Herron,¹ D. O'Brien,³ R. Fitzgerald,¹ T. M. Boland,² and F. Buckley¹^{*} Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland ³School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 N2E5, Ireland ³Crops, Environment, and Land Use Research Centre, Teagasc, Johnstown Castle, Co. Wexford, Y35 TC97, Ireland

ASA Conference September 8th 2022

System - Environmental footprint of the Next Generation Herd

	CTL	HC
GHG Emissions		
CO ₂ -eq, tonnes / ha	15.3	18.1
CO ₂ -eq, kg / kg FPCM	0.97	1.04
Nitrogen efficiency		
N surplus (kg)	202	233.8
N use efficiency	0.329	0.317

SR = 2.75 cows/ha across all systems

LGA = grazed to 3.5 cm receiving 300 kg concentrate/cow/year.

CTL = grazed to 4.5 cm receiving 300 kg concentrate/cow/year.

HC = grazed to 4.5 cm receiving 1100 kg concentrate/cow/year.

J. Dairy Sci. 104:8039-8049 https://doi.org/10.3168/jds.2020-19618

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Greenhouse gas emissions and nitrogen efficiency of dairy cows of divergent economic breeding index under seasonal pasture-based management

B. Lahart, ^{1,2} L. Shalloo, ¹ J. Herron, ¹ D. O'Brien, ³ R. Fitzgerald, ¹ T. M. Boland, ² and F. Buckley¹* ¹Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland ³School of Agriculture and Food Science, University College Dublin, Betfield, Dublin 4, D04 N2E5, Ireland ³Crops, Environment, and Land Use Research Centre, Teagasc, Johnstown Castle, Co. Wexford, Y35 TC97, Ireland

Genetics - Methane per cow per day (grams)

Milk solids kg per cow per day

Genetic Emission factor

Genetics contribution to reduced Enteric Methane

- Increased EBI
 - Increased Milk solids yield
 - No change in Enteric Methane
 - Current Models don't take this into account
 - » Increased milk solids results in increased enteric methane
 - Potential for inclusion in the national inventory?
 - » Each €1 increase in EBI is reducing the Ym factor by 0.0032%.
 - » €100 increase in EBI would reduce emissions by 220 kt
 - 2022 study Similar trend to date
 - » Different farm
 - » Different animals

Carbon Sub Index – 2023?

- New genetic index for inclusion in the EBI
- Carbon emissions
 - Existing traits
 - Same model as generates economic values
 - Replace economics with emissions values for each trait
 - Run emission values through the model
- Model run on total emissions
 - E.g. impact of an increase in milk on total emissions
- Linked to financials through price per tonne
 - Future value on carbon price

Achieving Climate Neutrality (Temperature stabilisation)

Achieving temperature stabilisation from agriculture

No ADDITIONAL warming

Historic warming

Achieving Climate Neutrality (Temperature stabilisation) from agriculture and land use sector

Biogenic Methane

Nitrous Oxide

Carbon Dioxide

ence September 8th 20

Agricultural Emissions

Biogenic Methane

- Currently all calculations use GWP100
 - Brings everything to 100 year periods
 - Methane has a multiplier of 28 (AR5)
 - Nitrous oxide 265
- Relatively new metric GWP* (Oxford Group)
- Reflects that methane has a half life of 12 years
 - Greater warming potential per kg of methane emitted
 - However it is assumed to be oxidised after 20 years
 - CO2 and Water vapour
 - Part of a short carbon cycle with CO2 available for photosynthesis again
 - No additional CO2 produced

ASA Conference September 8th 2022

Biogenic Methane –reduction to reach zero ADDITIONAL warming by mid 2030's

Circa 10% reduction in biogenic methane between 2018 and 2040 prevents ADDITIONAL warming from methane

ASA Conference September 8th 2022

IPCC

Emission metrics are needed to aggregate baskets of gases to determine net zero GHG emissions. Generally, achieving net zero CO₂ emissions and declining non-CO₂ radiative forcing would halt human-induced warming. Reaching net zero GHG emissions quantified by GWP-100 typically leads to declining temperatures after net zero GHGs emissions are achieved if the basket includes short-lived gases, such as methane. Net zero GHG emissions defined by CGTP or GWP* imply net zero CO2 and other long-lived GHG emissions and constant (CGTP) or gradually declining (GWP*) emissions of short-lived gases. The warming evolution resulting from net zero GHG emissions defined in this way corresponds approximately to reaching net zero CO₂ emissions, and would thus not lead to declining temperatures after net zero GHG emissions are achieved but to an approximate temperature stabilization (*high confidence*). The choice of emission metric hence affects the quantification of net zero GHG emissions, and therefore the resulting temperature outcome of reaching and sustaining net zero GHG emissions levels (*high confidence*). {7.6.1.4, 7.6.2, 7.6.3 PAGE 150.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Climate Change 2021 The Physical Science Basis

Comparison of Methane emissions calculated using GWP₁₀₀ and GWP*

Climate Change Advisory Council

Carbon Budget Technical Report

October 2021

An illustrative scenario featured in Price (2021)⁶² indicates that a 50% reduction in the rate of methane emissions in Ireland over the period to 2050 could contribute negative values of the order of -25 MtCO₂we per year for an extended period. This is significantly greater, than current total emissions of CO₂ and N₂O from the agriculture sector (~7.4 Mt CO₂e in 2019). However, as can be seen in Figure 5-3, negative values of GWP* gradually tend back to zero, as the climate responds to

ent 20

An Bille um Chníomhú ar con na hAeráide agus um Fhorbairt Ísealcharháin

• A sustained circa 0.35% annual decline is sufficient to stop further increases in global temperatures due to agricultural methane emissions

Similar to the impact of Net Zero CO2 emissions

 Faster reductions of methane emissions have an impact to removing CO2 from the atmosphere

Reducing Historic Warming

(a) carry out its functions under this section in a manner-

(II) relevant scientific advice, including with regard to the distinct characteristics of biogenic methane,

Achieving Climate Neutrality from agriculture and land use

Biogenic Methane

Nitrous Oxide

Carbon Dioxide

AGRICULTURE AND FOOD DEVELOPMENT AUTHORIT

Nitrous oxide

5.72 Mt CO2 eq

	Fertiliser (t N)	Protected % N	Total Mt CO ₂ eq	Mt CO ₂ eq saved
Baseline	408,493	0.8	2.3	-
Protected urea	408,493	76.2	1.47	0.83
Reduce fertiliser 30%	294,945	74.5	1.05	1.25

Achieving Climate Neutrality from agriculture and land use

Biogenic Methane

Nitrous Oxide

Carbon Dioxide

AGRICULTURE AND FOOD DEVELOPMENT AUTHORIT

Land Use and Land Use Change Tier 1 in the Inventory

- Mineral soils assumed sequester 0.5 t CO₂ /Ha *3.9 million Ha
- Drained Peat soils assumed to loose 25t CO₂/Ha *335,000 Ha
- Net picture excluding forestry (Loss of circa 6.4 million tonnes)

Unknowns

- Sequestration on mineral soils (Estimation 1.5 -2.0t CO2e/Ha)
- Drainage status of drained Peat soils (No idea)
- Carbon loss from drained peat soils (International default value)
- Net picture excluding forestry (Potentially a plus figure)

Carbon sequestration

ASA Conference September 8th 2022

Klumpp 2022

Soil Carbon Measurement

P - ☆☆

🖒 🖞 https://www.gov.ie/en/press-release/d7063-mcconalogue-announces-27-million-funding-to-expand-the-national-agricultural-soil-carbon-observat 👻 🔒 Search...

Edit View Envoiter Tools Hal

ims Commercial ... 🕫 RTÉ Ireland's National Televisio... 🖞 gov.ie - McConalogue announ... 🕴 gov.ie - McConalogue ann... 🗴 📑 This website doesn't work in In... 了

Summary

- Footprint
 - Model and Emission factor updates
- Technologies
 - Technologies available for take up at farm level
 - Action now required at farm level
- Research to deliver new solutions
- Temperature stabilisation -strategy
 - Methane reduction circa 10% followed by 3.5% a decade (Allen et al.,)
 - N20
 - Fertiliser type and quantity
 - Emission factors
 - CO2
 - Emission factors (Lime and Urea)
 - Soil carbon sequestration and loss

Acknowledgements

TRUST

agricultural science association

ASA Conference September 8th 2022

AGRICULTURE AND FOOD DEVELOPMENT AUTHO