SWTICHING TO AMMONIUM BASED FERTILISER CAN REDUCE N₂O EMISSIONS FROM WET GRASSLAND SOILS

Karl G. **Richards**, A. Gebremichael, N. Rahman, D. Krol, P. Forrestal, & G.J. Lanigan

Teagasc, Crops, Land Use and environment, Johnstown Castle. Email: Karl.Richards@Teagasc.ie

Introduction

- Dominant grazed grasslands c. 90% UAA
- Grasslands receive up to 250 kg N ha⁻¹ yr⁻¹
- Irish uses c. 400,000 T N yr⁻¹ 50% straight N and 50% compound NPK
- Irish agriculture 36% of national GHG emissions (23% CH₄ and 13% N₂O)
- Agriculture to reduce GHG emissions by 22-30% by 2030
- The objective of the study was to evaluate and refine the emission factor (EF) for a range of N-P-K compound fertilizers

Background – Move from nitrate to urea fertilisers

Harty et al. (2016) Science of the Total Environment. 563-564: 576-586

Forrestal et al. (2016) Soil Use & management 32: 92-100

An Roinn Talmhaíochta, Department of Agriculture. Food and the Marine

Background – MACC

emissions in Irish agriculture 2021-2030. Teagasc.

Materials and Methods

- Cut permanent grassland
- 80 kg N/ha Silage June & July
- 7 fertiliser treatments
 - 1. Control (no fertiliser)
 - 2. 18-6-12 (ammonium-based)
 - **3**. 10-10-20 (ammonium-based)
 - 4. 24-2.2-4.5 (nitrate-based),
 - 5. 27-2.5-5 (nitrate-based)
 - 6. CAN (nitrate-based),
 - 7. Urea + NBPT
- N₂O measured using static chambers for 3 months
- Measurements were made frequently after fertilizer application.
- Cumulative N₂O emissions GLMM (fertiliser type and timing fixed effects) in R

Moderatelydrained soil

Results – application timing

- N₂O emissions significantly different between application times (July>June)
- June (WFPS 58%) 0.35 to 1.11%
- July (WFPS>70%) 1.7 to 3.1%
- Higher N₂O losses July due to denitrification

=ooter

Gebremichael et al. 2021. Agronomy, 11, 1712.

Results – Fertiliser type

- June emissions < 1 kg N₂O-N ha⁻¹
 - 18:6:12 > 27-2.5-5 & urea+nbpt
- July emissions >1.5 kg N₂O-N ha⁻¹
 - CAN& 27-2.5-5 had higher N₂O emissions

=ooter

 Under denitrifying conditions NH₄ based fertilisers reduced N₂O by 37 to 44%

Results – Grass Yields

- Grass yields
 - Control 940 to 1340 kg DM ha⁻¹ yr⁻¹
 - Fertilised 3100 to 3600 kg DM ha⁻¹ yr⁻¹
- Fertiliser treatments > control
- No significant effect of fertiliser type on DM yield or NUE
- Yield Scaled N₂O
 - June 18:6:12 >yield scaled N₂O
 - July CAN & 27:2.5:5 significantly > than other fertilisers

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine ⁼ooter

Gebremichael et al. 2021. Agronomy, 11, 1712.

Summary

- N₂O emissions highest when soil >70% WFPS
- Under wet conditions nitrate based compound fertilisers had higher N₂O emissions compared to ammonium based compounds
- Moving to ammonium-based compounds may reduce N₂O emissions
- Fertiliser type effect on NH₃?
- New multi-site & multi-year project underway to provide new national N₂O and NH₃ EFs for compound fertilisers

References – Fertiliser type & N₂O abatement

Forrestal, P.J. et al. 2016. Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland. **Soil use and Management**, 32, 92-100.

Gebremichael et al. 2021. Ammonium-Based Compound Fertilisers Mitigate Nitrous Oxide Emissions in Temperate Grassland. **Agronomy**, 11, 1712.

Harty et al. 2016. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. **Science of the Total Environment**, 563, 576-586.

Lanigan G.J. et al. 2018. An analysis of abatement potential of Greenhouse Gas emissions in Irish agriculture 2021-2030. Teagasc.

Opportunities

Teagasc is recruiting 18 new permanent greenhouse gas researchers and technical staff this summer. Keep an eye on the web: https://www.teagasc.ie/opportunities/

Acknowledgements

This research was financially supported under the National Development Plan, Research Stimulus Fund, Department of Agriculture, Food and the Marine Grant numbers RSF15S655 and 2021R550.

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine ter

