The interaction between key soil nutrients; carbon, nitrogen and phosphorus on N-cycling, productivity and N_2O emissions.

O'Neill, R. M., Gebremichael, A. W., Lanigan, G J, Renou-Wilson, F., Müller, C., and Richards, K. G.

Rosie.oneill@Teagasc.ie

Agriculture, Food and the Marine An Roinn Talmhaíochta, Bia agus Mara

WALSH SCHOLARSHIPS PROGRAMME

- **BACKGROUND:** Long-term (1968) grazed grassland of varying P concentrations.
- OBJECTIVE: Investigate effects long-term
 P on N₂O emissions.
- **HYPOTHESIS:** Low P will increase N₂O emissions.

KILDAVIN

Murntown

casasc

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY Google 0 100%

WHY?

Figure. O'Neill et al., 2020. cumulative N_2O from 0 kg P ha⁻¹ yr⁻¹ & 45 kg P ha⁻¹ yr⁻¹ treated soils following C + N or N addition. Means ± 1 SE. (n = 3). https://doi.org/10.1016/j.soilbio.2020.107726

Map of site

 $\mathbf{A}_{\mathbf{GRICULTURE}}$ and $\mathbf{F}_{\mathbf{OOD}}$ $\mathbf{D}_{\mathbf{EVELOPMENT}}$ $\mathbf{A}_{\mathbf{UTHORITY}}$

Treatments

 $KNO_3 40Kg N ha^{-1}$ $NH_42SO_4 40 Kg N ha^{-1}$ Synthetic Urine 750 Kg N ha^{-1}

Static Chamber technique

Results

Figure. Cumulative N_2O (Kg N ha⁻¹) under KNO₃, and NH₄SO₄ addition; and under synthetic urine addition (n = 5, means = -/+ std dev).

750 Kg N ha⁻¹ High Phosphorus

750 Kg N ha⁻¹ Low Phosphorus

Results

Figure 5.(a) Dry Matter Yield from each treatment (Kg DM ha⁻¹). (b) NUE(%) over the first 45 days after fertilisation for the control, KNO₃, (NH₄)₂SO₄ and synthetic urine treatments at soil PO and P30.

Law of the Minimum

Justus von Liebig (1803-1873)

"Law of the Minimum," states that **if one of the essential plant nutrients is deficient, plant growth will be poor even when all other essential nutrients are abundant**.

Conclusions:

Future Research:

- 1. Higher P levels reduce N_2O
- 2. Higher P levels promote NUE
- 3. N-saturation spread in excess.

- 1. Obtain C:N:P ratios for more soil/land use types.
- 2. Examine C:N:P ratios for seasonal changes.

Thank you

Any Questions?

Department of

Acknowledgements:

Karl Richards and Gary Lanigan (Teagasc), Florence Renou-Wilson (UCD), Christoph Mueller (JLU) Food and the Marine (Supervisors)

> Department of Agriculture (project funding), Teagasc Walsh Fellowship Scheme. All the lab and admin staff in Teagasc and Justus Liebig University, Giessen John Murphy and Rioch Fox (Teagasc) – Site Maintenance