# REVIEW OF

2023-Environmental Sustainability

**Cathal Buckley** 

Teagasc, Agricultural Economics & Farm Surveys Department

**Rural Economy and Development Programme** 

November 28th 2023





#### **Overview**

Sustainability conceptual framework

Methodological approach used for projecting for 2023

Projections results for 2023

Summary / conclusion



### Teagasc NFS Sustainability Report

- Farm level sustainability is intersection of:
  - 1. Economic
  - Environmental
  - 3. Social
  - 4. Innovation



- The 2022 Teagasc Sustainability Report
  - Published 6<sup>th</sup> of October 2023
  - 8<sup>th</sup> report since 2013



https://www.teagasc.ie/media/website/publications/202 3/SustainabilityReport2022.pdf

eagasc

#### **Environmental Sustainability**

- 1. Gaseous Emissions
  - Greenhouse Gases
  - Ammonia

2. Risk to water quality

3. Biodiversity Indicator











#### **Gaseous Emissions - Agriculture**

Source: EPA, 2023

Year 2022





# **Climate Action Plan 2021: GHGs**

 Sectoral GHG reduction targets for 2030 (compared to 2018)

• Agriculture: 25%

22.4 Mt in 2018 to 16.8Mt in 2030

Carbon neutrality by 2050



#### **Gaseous Emissions - Ammonia**

99.4% of Ammonia Emissions generated from Agriculture (EPA, 2023)





Source: EPA, 2022



#### **Emissions – How are they calculated**



- Activity Data
  - Farm Practice (e.g. animal numbers, chemical fertilisers & manure management)
- Emission Factors
  - Scientific evidence from lab/field experiments, national level if possible (peer reviewed)



### Methodological approach – Emission Factors

- GHG All in common currency of CO<sub>2</sub> equivalence
  - » IPCC based national inventory approach for all farm types
  - » Replicating approach used by EPA at national level
  - » CO<sub>2</sub> equivalent in the base gas (1=1)
    - Methane  $(CH_4)$  1 tonne = 28 tonnes of  $CO_2$  equivalent
    - Nitrous Oxide  $(N_2O)1$  tonne = 265 tonnes of  $CO_2$  equivalent
- Ammonia (NH<sub>3</sub>)
  - » National inventories approach for all farms
  - » Replicating approach used by EPA at national level for reporting under the EU NEC Directive







# Methodological approach – Activity Data

- Activity data from Teagasc National Farm Survey
- NFS conducted by Teagasc since 1972 (part of EU Farm Accountancy Data Network)
  - Sample of 793 farms in 2022 representing over 85,951 nationally
  - Reports on main land based systems Dairy, Cattle, Sheep & Tillage
- Data captureD for environmental modelling
  - Animal numbers by category (e.g. Dairy Cows)
  - Crops grown (e.g. barley, wheat, oats)
  - Fertilisers applieD (e.g. CAN, urea, protected urea)
  - Lime applied
  - Manure management practices (housing, storage, landspreading)
  - Technology Adoption







#### Activity Data Projections / Assumptions — 2023

- Animal Numbers & Chemical Fertilisers applied are key parameters Type and quantity
- 1. Animal Inventories
  - CSO June survey 2022 vs 2023
- 2. Chemical Fertiliser & Lime Sales
  - Sales data DAFM Sept 2022 June 2023\*\*
  - Lime Sales January June 2023\*\*
- 3. Technology adoption
  - Gaseous Emissions Mitigation
    - » LESS use to increase in line with historical trends
- Apply these changes to farms with the Teagasc NFS
  - Using 2022 as the base year



#### Cattle Numbers June 2021 vs 2022

| Animal inventories       | 2022 vs 2023 | % Pop<br>2023 |
|--------------------------|--------------|---------------|
| Total cattle             | -0.74%       | 100%          |
| Dairy cows               | +1.19%       | 22%           |
| Other cows               | -4.50%       | 12%           |
| Bulls                    | -3.73%       | 1%            |
| Cattle: 2 years and over | +7.63%       | 11%           |
| Cattle: 1-2 years        | -1.39%       | 26%           |
| Cattle: under 1 year     | -2.82%       | 28%           |



### **Cow Population**



| <b>Enteric Fermentation EF Co-efficients</b> | 2021   |
|----------------------------------------------|--------|
| Animal Category                              |        |
| Dairy cows                                   | 120.19 |
| Beef cows (Suckler Cows)                     | 72.27  |
| Dairy heifers                                | 53.60  |
| Beef heifers                                 | 57.10  |
| Cattle < I year                              | 33.23  |
| Cattle < 1 yrs - male                        | 34.70  |
| Cattle < 1 yrs - female                      | 31.88  |
| Cattle 1 - 2 yrs                             | 55.02  |
| Cattle 1 - 2 yrs - male                      | 58.09  |
| Cattle 1 - 2 yrs - female                    | 51.41  |
| Cattle > 2 yrs                               | 28.72  |
| Cattle > 2 yrs - male                        | 33.97  |
| Cattle > 2 yrs - female                      | 20.28  |
| Bulls for breeding                           | 91.38  |



#### Sheep Numbers June 2022 vs 2023

| Animal inventories | 2022 vs 2023 |
|--------------------|--------------|
| Total sheep        | +0.27%       |
| Ewes               | -3.05%       |
| Rams               | +4.67%       |
| Other sheep        | +3.52%       |



#### Chemical Fertiliser – Nitrogen (September to June\*)

|                     | 2022*   | 2023*   | % change |
|---------------------|---------|---------|----------|
| Total               | 274,935 | 227,398 | -17.3%   |
| Straight CAN        | 84,909  | 58,128  | -31.5%   |
| Straight Urea       | 41,909  | 33,332  | -20.5%   |
| Protected Urea      | 26,032  | 25,766  | -1.0%    |
| NK Compounds        | 1,831   | 1,412   | -22.9%   |
| NP Compounds        | 1,554   | 983     | -36.7%   |
| NPK Compounds       | 114,846 | 103,299 | -10.1%   |
| Other N Fertilisers | 3,854   | 4,478   | 16.2%    |

STOCKS FROM 2022?



<sup>\*</sup> September to June (DAFM,2023)

#### **Chemical Nitrogen GHG Emission Factors**

| GHG linked Emission factors | (kgN2O-N/Nkg) | EF Multiple |
|-----------------------------|---------------|-------------|
| CAN                         | 0.0140        | 1.0         |
| Straight Urea               | 0.0025        | 5.6         |
| Protected Urea              | 0.0040        | 3.5         |

Source: EPA, 2022



#### **Liming Rates**

- Optimum pH required for nutrient use efficiency and maximum crop yield
  - Natural release from soils
- Lime sales also decreased by circa 16% between 2022 and 2023 January to June (DAFM, 2023)
- Liming has a once off pulse of CO<sub>2</sub> in year it is applied
  - 12% Carbon in Lime 120kg of CO<sub>2</sub> per tonne of Lime



Source: Wall et al., 2015



#### Low Emissions Slurry Spreading

- Aggregate slurry spread by LESS
  - 48% in 2021
  - 59% in 2022
  - 65% in 2023?



### GHG emissions profile for Agriculture in ROI 2021

| 3. Agriculture (Mt CO2 eg)                 | 2021  | 0/0   |
|--------------------------------------------|-------|-------|
| 3.A Enteric Fermentation (CH₄)             | 14.49 | 63.1% |
| 3.B Manure Management (CH₄ & N₂O)          | 2.70  | 11.8% |
| 3.C Rice Cultivation                       | _     | _     |
| 3.D Agricultural Soils (N <sub>2</sub> O)  | 5.06  | 22.1% |
| 3.E Prescribed Burning of Savannas         | -     | -     |
| 3.F Field Burning of Agricultural Residues | -     | -     |
| 3.G Liming (CO₂)                           | 0.60  | 2.6%  |
| 3.H Urea Application (CO <sub>2</sub> )    | 0.10  | 0.4%  |
| 3.I Other Carbon-containing fertilizers    | -     | -     |
| 3.J Other                                  | -     | -     |
| Total Emissions (kt CO <sub>2</sub> eq)    | 22.95 | 100%  |



#### Projections for 2023 for GHG emissions tonnes per hectare NFS Farms – IPCC Category









### NH<sub>3</sub> National Inventory Accounts

| Total NH <sub>3</sub> emissions (kilotonnes NH <sub>3</sub> ) | 2021  | %      |
|---------------------------------------------------------------|-------|--------|
| Cattle (Manure Management + Grazing)                          | 95.8  | 77.3%  |
| Pigs                                                          | 6.4   | 5.2%   |
| Sheep (Manure Management + Grazing)                           | 3.3   | 2.6%   |
| Poultry                                                       | 5.0   | 4.1%   |
| Horses                                                        | 1.7   | 1.4%   |
| Mules                                                         | 0.1   | 0.1%   |
| Goats                                                         | 0.0   | 0.0%   |
| Chemical Fertilizer                                           | 11.1  | 9.0%   |
| Other                                                         | 0.3   | 0.3%   |
| National Total                                                | 123.9 | 100.0% |



# NH<sub>3</sub> Emission Factors

| N Excretion Rates (kg/head/yr) | 2021   |
|--------------------------------|--------|
| Animal Category                |        |
| DairyCows                      | 110.22 |
| Cows Excluding Dairy Cows      | 75.04  |
| Dairy Heifers                  | 72.44  |
| Other Heifers                  | 76.58  |
| Cattle 0 - 1 yrs male          | 35.03  |
| Cattle 0 - 1 yrs female        | 32.42  |
| Cattle 1 - 2 yrs male          | 73.72  |
| Cattle 1 - 2 yrs female        | 69.77  |
| Cattle > 2 yrs male            | 46.07  |
| Cattle > 2 yrs female          | 44.57  |
| Bulls                          | 86.68  |
| Ewes Lowland                   | 12.573 |
| Ewes Upland                    | 9.374  |
| Rams - lowland                 | 11.383 |
| Rams - upland                  | 9.769  |
| Other Sheep>1 - lowland        | 12.893 |
| Other Sheep>1 - upland         | 9.916  |
| Lambs - lowland                | 3.675  |
| Lambs - upland                 | 4.322  |

| Ammonia Emission factors - Chemical N fertiliser | (NH3 - g per kg) | EF Multiple |
|--------------------------------------------------|------------------|-------------|
| Straight Urea                                    | 155              | 1.0         |
| CAN                                              | 8                | 19.4        |
| Protected Urea                                   | 33               | 4.7         |



#### NH<sub>3</sub> emissions kg per hectare by Farm System











#### **Summary / Conclusion**

- Lower animal activity levels in 2023 but not across all categories
  - June cattle number -0.7%
    - » Dairy Cows +1.19%
  - Sheep numbers +0.27
    - » Ewes -3.05%
- Reduction in the quantity of chemical N fertilisers applied in 2023
  - Chemical N sales (Sept-June) down by 17%
    - » Double digit % reduction in all categories except protected urea (-1%)
    - » Overhang of STOCKS from 2022? Big Caveat
- Lime projected to decline by 16%
  - Reduced pulse of direct GHG emissions in short run
- Other measures
  - » Straw incorporation, legumes / protein crops?



#### **Summary / Conclusion**

- Estimates Absolute per hectare GHG Emissions in 2023
  - 11% on Dairy Farms, 17-8% on Non-Dairy Farms

- Estimates Absolute NH<sub>3</sub> Emissions in 2023
  - ↓ 5% on Dairy Farms, ↓ 9-10% Non-Dairy Farms
  - Level Technology adoption Caveat



# THANK YOU

cathal.buckley@teagasc.ie



Scan the QR Code with your phone's camera to access the full report

