

Cavity spot of carrot: developing techniques for research and disease management

Department for Environment Food & Rural Affairs

Dr Lauren Chappell

School of Life Sciences, University of Warwick

Teagasc Webinar – 5th December 2023

Vegetable Genetic Improvement Network

- An interactive network of researchers and industry leaders, who work together to promote market delivery of improved vegetable varieties using sustainable production systems.
- Work of four key UK vegetable crops:
 - Carrot
 - Onion
 - Lettuce
 - Vegetable Brassica
- Using genetic diversity to identify genes linked to resistance for key biotic and abiotic traits

Importance of genetic diversity

UK Vegetable Genebank

Conserving and using vegetable crop diversity

Total number of Accessions	14022
Brassica (cabbage and related crops)	5273
Allium (onions, leeks)	1754
Daucus (carrot)	1 1 0 1
Daucus (carrot)	1401
Lactuca (lettuce)	1481

Carrot Diversity Set

- The VeGIN Carrot Diversity Set (CDS) is a subset of the carrot accessions held by Warwick Vegetable Genetic Resource Unit (GRU)
- These 77 lines capture the genetic and morphological variation present in the core collection including:
 - Root shape and colour
 - Geographic origin
 - Foliage characteristics

Cavity spot

- Cavity spot is one of the biggest problems for carrot growers in the UK; estimated losses at least £5M per annum
- In the UK principally caused by the oomycete *P. violae* and to a lesser extent *P. sulcatum* – incidence of each species was unknown
- Other *Pythium* species associated with cavity spot include *P. intermedium* and *P. sylvaticum*
- Other fungi may cause similar root lesions or invade cavities e.g. *Cylindrocarpon destructans* and *Mycocentrospora acerina*

The problems

- Interaction between components of the cavity spot complex unknown
 - Relative importance of *P. violae*, *P. sulcatum*, *P. intermedium*

• The disease is unpredictable

- Lack of understanding of key abiotic and biotic factors that enhance disease
- Lack of understanding of biology of *P. violae* and timing of infection
- Metalaxyl issues / lack of new actives
 - Microbial degradation of metalaxyl / future withdrawal
 - Field trials to identify new control products / approaches challenging lack of adequate disease levels
 - Lack of artificial inoculation approaches

• Commercial carrot varieties lack good resistance

• Cv. Nairobi most widely grown – low-intermediate resistance

Developing techniques for research and control

1) Identification of *Pythium* **isolates** associated with cavity spot Determine frequency of different *Pythium* spp. associated with cavity spot

Develop artificial inoculation systems to induce cavity spot disease to enable:
 Identification of new crop protection products
 Identification of new sources of plant resistance

P. violae is the major cavity spot pathogen in the UK

80

Cavity spot lesion size: P. violae > P. sulcatum > P. intermedium

Inoculation of pot grown carrots with *P. violae* mycelium

- Millet grain inoculum used which is quicker to produce than oospores and resulted in:
 - Seedling damping off at higher levels
 - Reduction in carrot foliage
 - Production of stubby carrots
 - Reduction in root weight
 - Cavity spot incidence of 50%
 - Low cavity spot severity (mean 2-3 lesions / root)

Carrot resistance to cavity spot

- <u>Glasshouse pot test:</u> millet inoculum
- Differences between different carrot accessions
- Some relationship with *P. violae* agar plug test

Artificial inoculation of 'macrocosms'

- P. violae oospores produced in sand/oat substrate
- Consistently high cavity spot incidence

 up to 40% cavity spot incidence,
 severity of 6 lesions / carrot
- Normal growth of carrots

Carrot resistance to cavity spot

- <u>Macrocosms field test:</u> oospore inoculum
- Differences in resistance observed between carrot accessions
- Similar results to glasshouse pot test

Metalaxyl and carrot variety reduces cavity spot in pot tests

- Inoculum at 10mg/g and 30mg/g
- Differences in resistance observed between carrot accessions
- Metalaxyl reduces cavities

Fungicide trial in macrocosms

- Highly susceptible carrot cv. Criolla used
- Treatments:
 - SL567a (metalaxyl)
 - Previcur Energy (propamocarb and fosetyl Al)
 - Trisoil (Trichoderma atroviride I-1237)
 - Ranman (cyazofamid)

Only metalaxyl reduces cavity spot

- Cavity spot is the primary soilborne disease affecting UK carrots
- We have developed an artificial inoculation system for both potbased experiments and field 'macrocosms'
- Control of cavity spot is reliant on the use of the fungicide metalaxyl
- Resistance to cavity spot have been identified in carrot

Acknowledgements

- Prof. John Clarkson
- Nicole Pereira
- Kat Hales
- Andy Jukes
- Guy Barker
- Dr Charlotte Allender & GRU team
- Warwick Horticultural Services Team

Any Questions.....

