

DUBLIN INSTITUTE OF TECHNOLOGY

INSTITIÚID TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

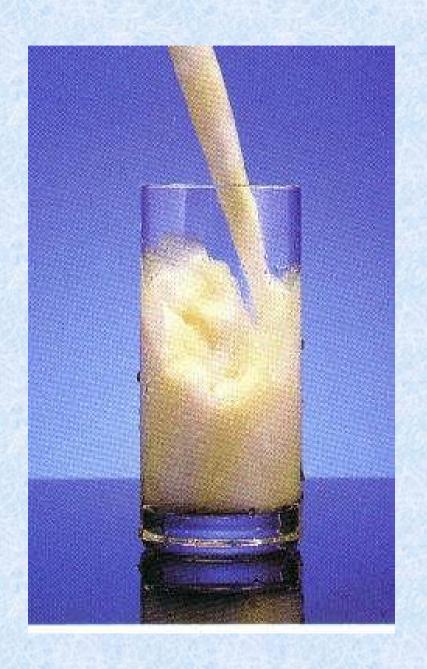
ESTABLISHED 1887

MEMBER of the EUROPEAN UNIVERSITY ASSOCIATION

Milking the Dairy Industry' to avoid waste

by

Dr Rena Barry-Ryan


School of Food Science and Environmental Health,

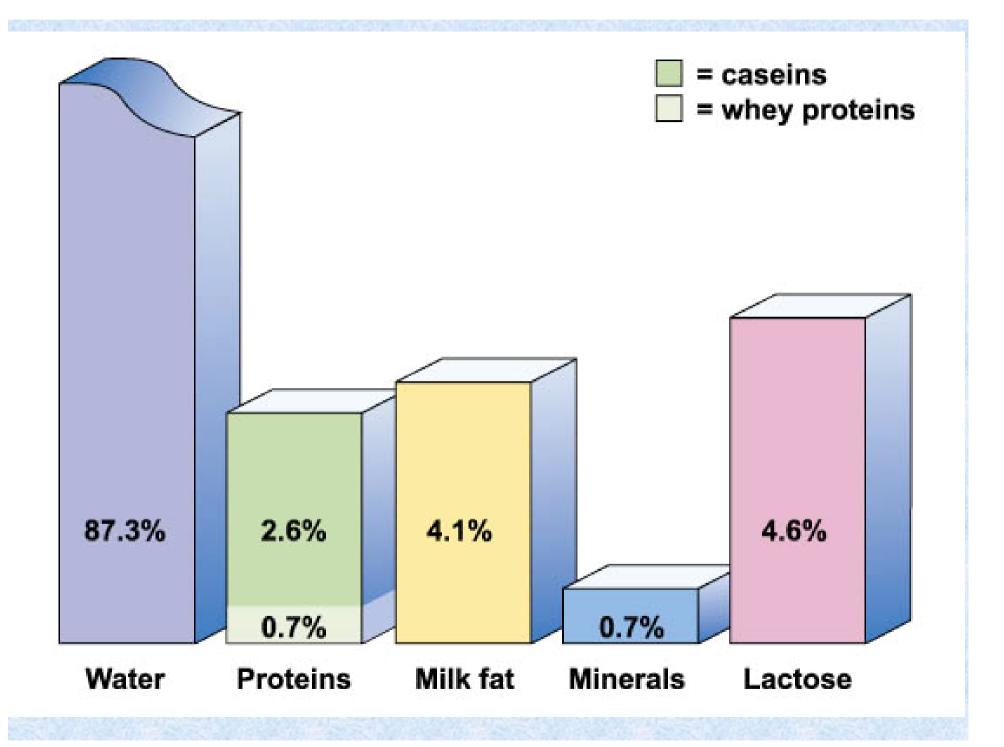
Dublin Institute of Technology,

Cathal Brugha Street,

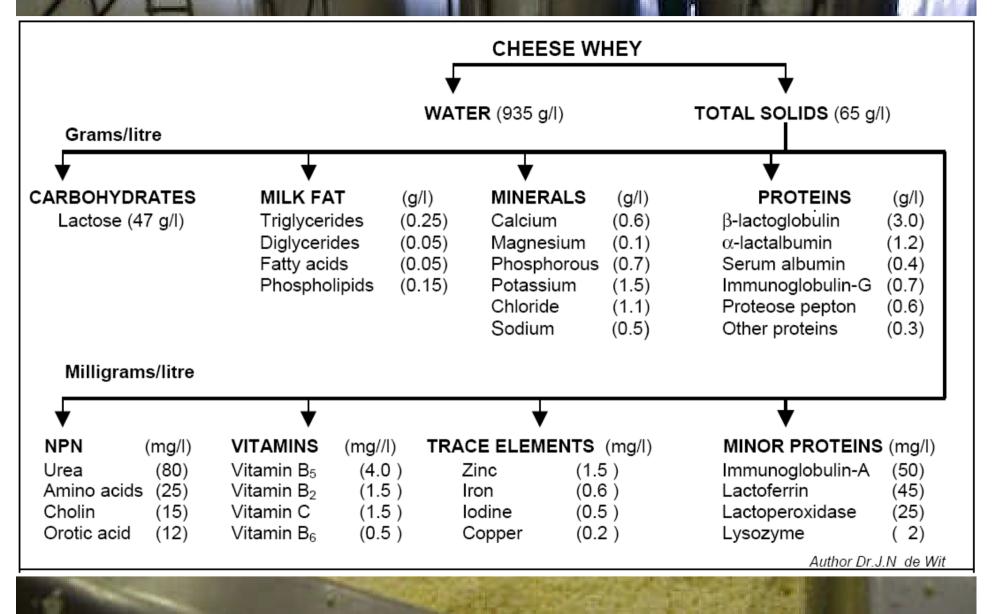
Dublin 1.

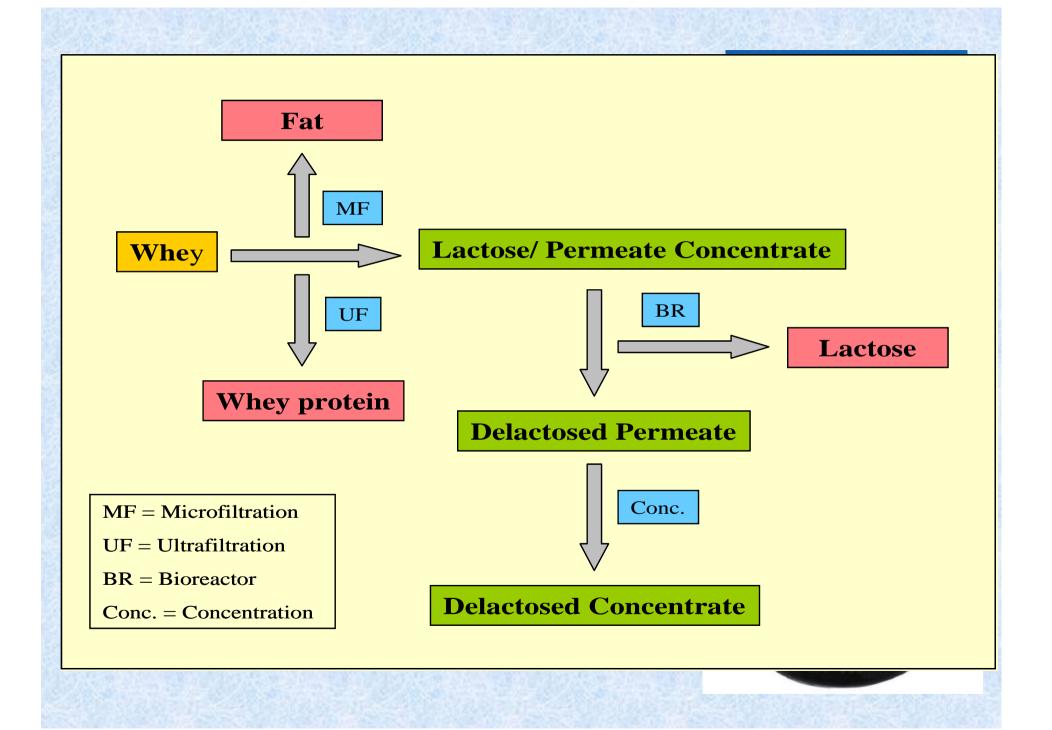
7th Feb 2014

Days


Weeks

Months

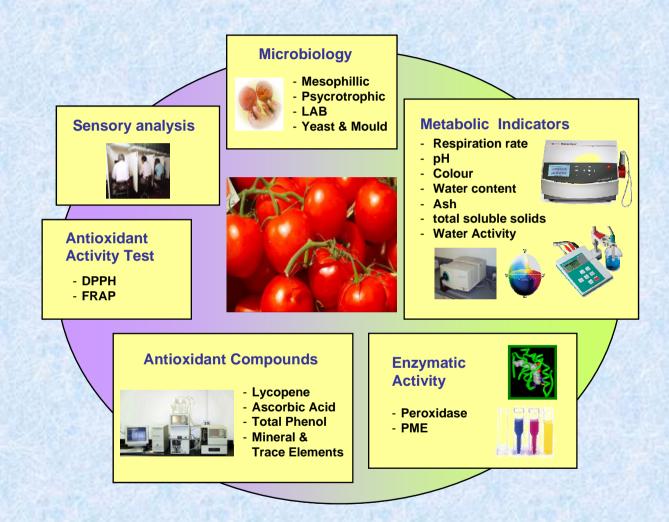




[8] Surring [9] Draining [10]

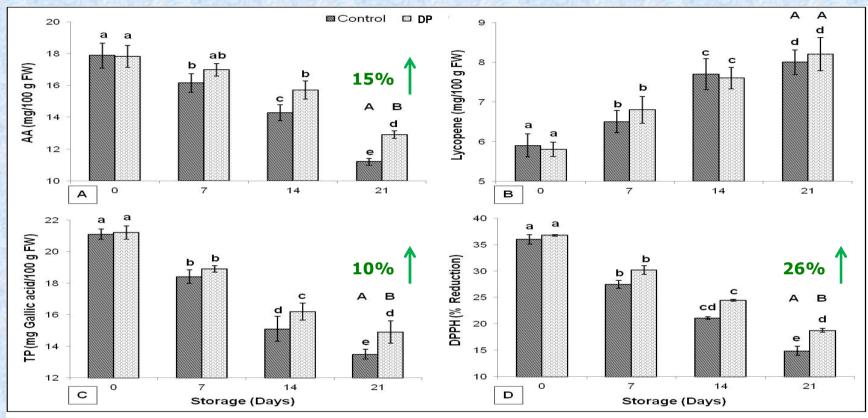
DIT

Examine the applicability of whey permeates to preserve & enhance the nutritional quality of fresh and processed fruits and vegetables.



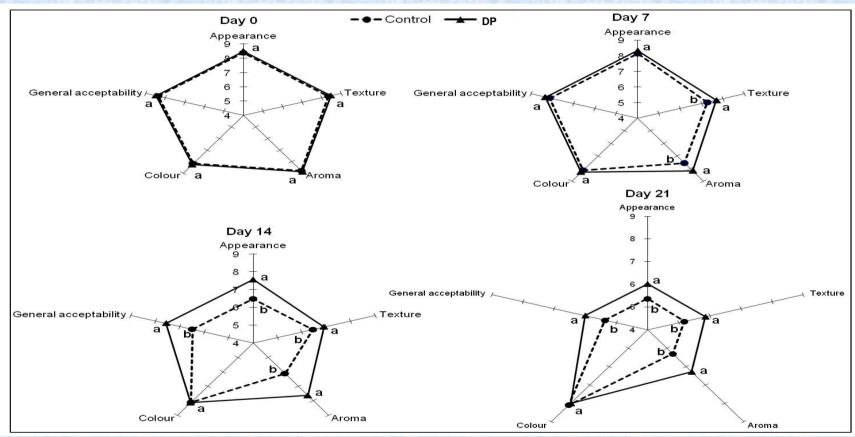
- Irish vine-ripened tomatoes
 (Lycopersicon esculentum L. Mill. cv. Moneymaker)
- Irish Strawberries(Fragaria × ananassa Duch. var Elsanta)

Methods



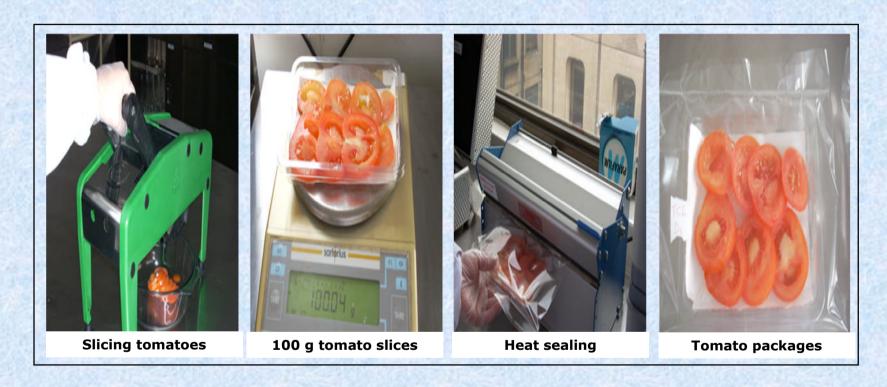
Physico-chemical, Nutritional and Microbial Markers tested

Whole Tomatoes

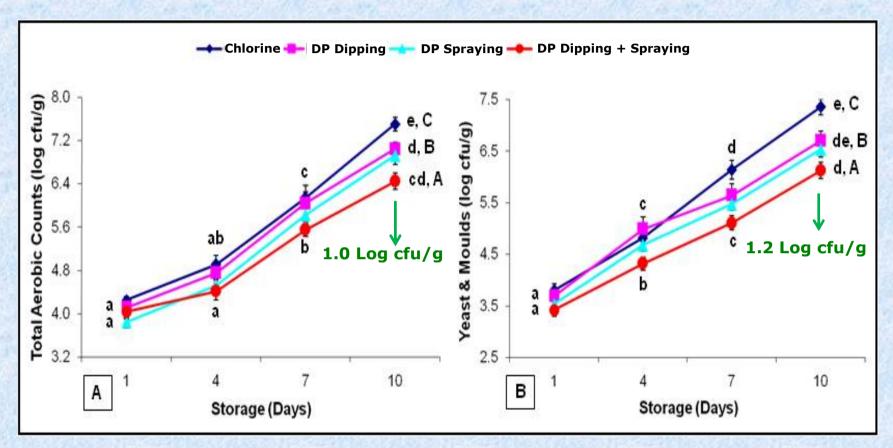


Effect of whey delactosed permeate (DP) and chlorine treatment on (A) ascorbic acid (AA), (B) lycopene, (C) total phenols and (D) antioxidant activity - DPPH in whole tomatoes during 21 days of storage at 15 °C

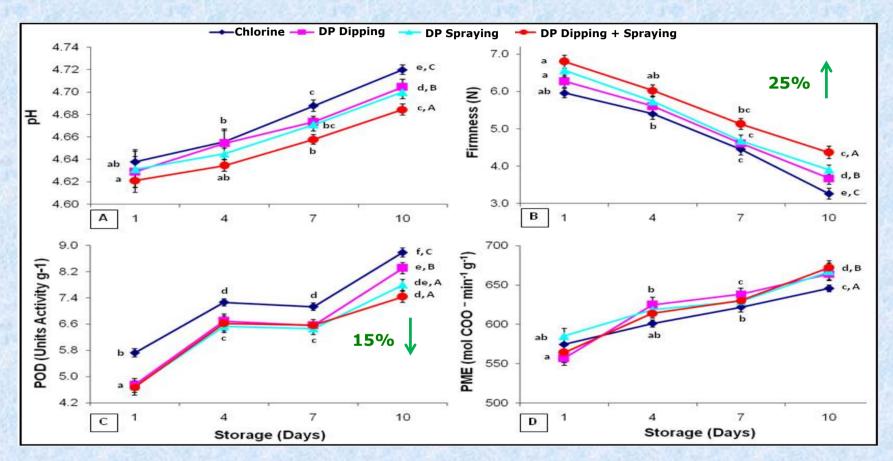
Whole Tomatoes



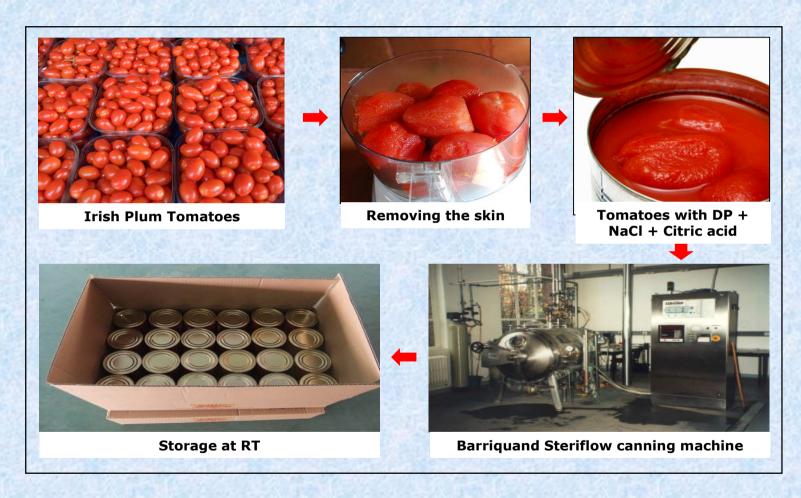
Sensory evaluation of whole tomatoes after whey delactosed permeate (DP) and chlorine treatment and stored at 15 °C for 21 days.


Sliced Tomatoes

Processing steps for fresh-cut tomatoes


Sliced Tomatoes

Effect of chlorine and whey delactosed permeate (DP) treatments by dipping, spraying and a combination of both methods on total aerobic counts (A) and yeast and moulds (B) during 10 days storage of freshcut tomato at 4 °C.


Sliced Tomatoes

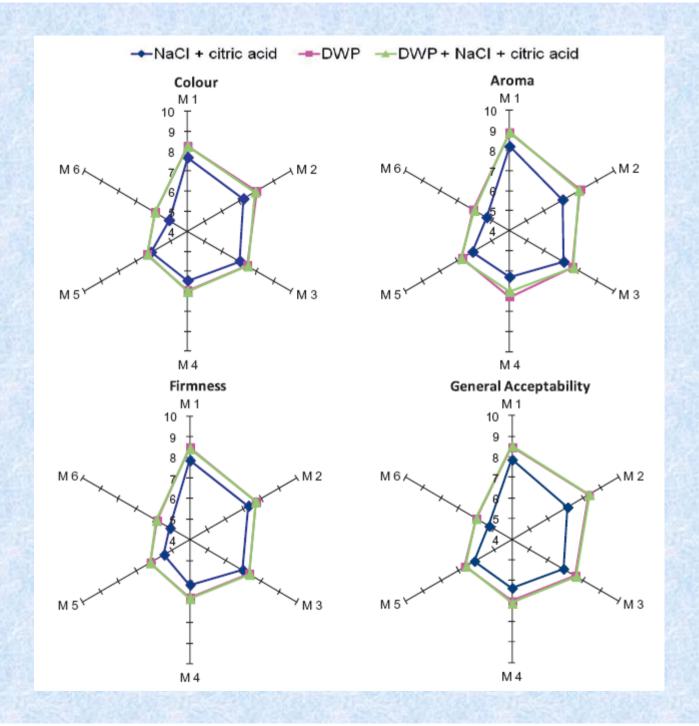
Changes in (A) pH, (B) texture, (C) peroxidase (POD) and (D) pectin methyl esterase (PME) of fresh-cut tomatoes treated with chlorine and whey delactosed permeate (DP) by dipping, spraying and a combination of both methods during the 10 days of storage at 4 °C

Canned Tomatoes

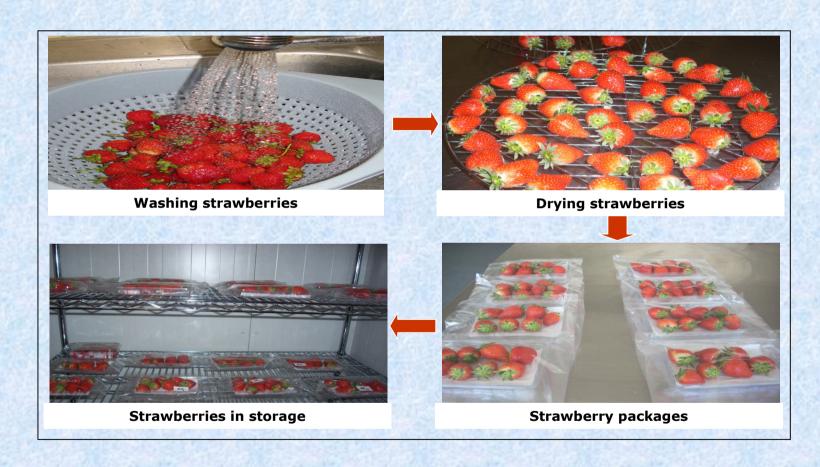
Processing steps for canned tomatoes

Canned Tomatoes

Changes in phytochemical content of canned Irish plum tomatoes added with delactosed permeate (DP) and/or NaCl+ citric acid for 6 months

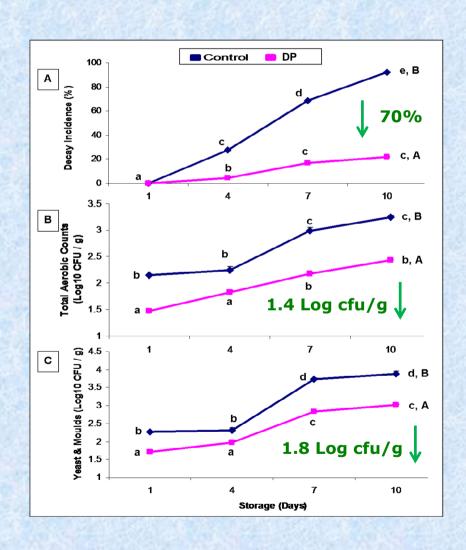

Markers		Significance		Storage (Months)						
	Treatments	of Difference	0	1	2	3	4	5	6	
Ascorbic Acid (mg/100 g DW)	NaCl+ Citric Acid	A	130.81g	122.12 ^f	114.7 ^{de}	109.05 ^d	101.22 ^c	95.983 ^b	91 Oa	
	DP	В	141.4 ^h	133.9g	128.4 ^{fg}	122.6 ^f	117.5e	112.9 ^{de}	108.2 ^d	
	DP + NaCl+ Citric Acid	C	143.51 ^h	139.78gh	135.62 ^g	129.15 ^{fg}	122.317 ^f	115.38 ^{de}	111.76 ^{de}	
Lycopene (mg/100 g DW)	NaCl+ Citric Acid	A	108.3 ^b	107.8 ^b	105.5ab	106.6 ^b	104.7 ^{ab}	102.8a	104-1 ^{ab}	
	DP	В	120.2 ^d	116.5 ^{cd}	115.8 ^{cd}	113.3 ^c	115.8 ^{cd}	115.5 ^{cd}	114.0 ^c	
	DP + NaCl+ Citric Acid	C	125.3e	123.3e	122.0 ^{de}	122.7 ^{de}	121.8 ^{de}	121.2 ^{de}	121.0 ^{de}	
Total Phenol (mg GAE/100 g DW)	NaCl+ Citric Acid	A	290.6a	292.0ab	294.7 ^b	295.2 ^b	297.8°	298.8 ^{cd}	300.7d	
	DP	В	304.4e	305.3e	306.2e	308.2 ^f	310.3 ^g	311.6gh	312.4gh	
	DP + NaCl+ Citric Acid	C	305.3e	306.2 ^e	307.4 ^{ef}	309.3 ^f	311.4gh	312.1gh	314.1 ^h	
DPPH (% Inhibition)	NaCl+ Citric Acid	A	64.67 ^e	63.17 ^{de}	60.67 ^d	56.67°	54.5 ^b	53.33 ^b	51.5 ^a	
	DP	В	75.5 ^{fg}	72.67 ^f	71.00 ^f	68.0ef	65.17 ^e	63.0 ^{de}	61.33 ^d	
	DP + NaCl+ Citric Acid	C	80.33g	79.0 ^g	77.33 ^{fg}	75.0 ^{fg}	73.5 ^f	71.17 ^f	67.17 ^{ef}	
FRAP (mg Trolox/100 g DW)	NaCl+ Citric Acid	A	1197.3 ^{fg}	1182.5 ^f	1156.1e	1104.5 ^{cd}	1064.7 ^b	1000.8ab	983.8a	
	DP	В	1213.8g	1203.8 ^{fg}	1187.8 ^f	1152.5 ^e	1124.0 ^d	1096.7°	1052.3 ^b	
	DP + NaCl+ Citric Acid	C	1216.5 ^g	1204.6 ^{fg}	1191.7 ^f	1168.8e	1139.5 ^d	1110.7 ^{cd}	1089.2°	

Canned Tomatoes

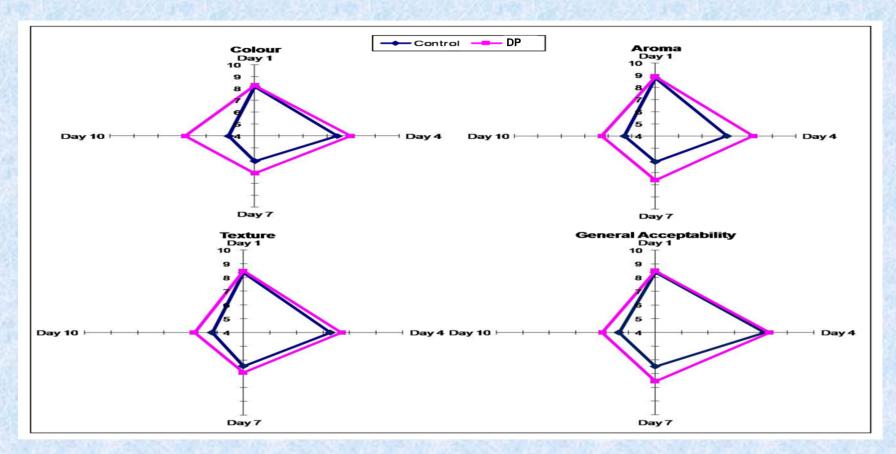

Changes in texture and colour of canned tomatoes added with delactosed permeate (DP) and/or NaCl + citric acid stored for 6 months

Manham	T44	Significance of	Storage (Months)							
Markers	Treatments	Difference	0	1	2	3	4	5	6	
Texture (N)	NaCl+ Citric Acid	A	4.17 ^{fg}	3.52 ^{de}	3.19 ^{cd}	3.06 ^c	2.83 ^b	2.71ab	2.53 ^a	
	DP	В	5.09 ^{gh}	4.81 ^g	4.62g	4.06 ^f	3.72e	3.56 ^{de}	3.27 ^d	
	DP + NaCl+ Citric Acid	C	5.45 ^h	5.35 ^h	4.82g	4.33 ^{fg}	4.08 ^f	3.82e	3.55 ^{de}	
Colour									\sim	
L*	NaCl+ Citric Acid	A	22.20 ^{de}	21.95 ^d	21.36 ^c	21.16 ^c	20.78bc	20.37 ^b	19.58a	
	DP	В	24.82 ^{fg}	24.84 ^{fg}	24.14 ^f	23.32e	22.72 ^{de}	22.22 ^{de}	21.76 ^d	
	DP + NaCl+ Citric Acid	C	25.50g	24.47 ^f	24.19 ^f	23.44e	23.08e	22.62 ^{de}	22.12 ^d	
a*	NaCl+ Citric Acid	A	9.49 ^c	9.26 ^{bc}	9.07 ^{bc}	8.80 ^b	8.64 ^b	8.41 ^b	8.01 ^a	
	DP	В	12.80 ^f	12.47 ^{ef}	12.31e	12.10 ^{de}	12.06 ^{de}	11.84 ^d	11.75 ^d	
	DP + NaCl+ Citric Acid	C	13.08 ^f	12.91 ^f	12.73 ^f	12.62 ^{ef}	12.55 ^{ef}	12.41e	12.22 ^e	
b*	NaCl+ Citric Acid	A	23.58 ^d	23.29°	23.18 ^c	22.82bc	22.62b	22.45 ^b	22.23a	
	DP	В	25.09 ^{fg}	24.62 ^f	24.33ef	24.10e	23.79 ^{de}	23.60 ^d	23.29 ^c	
	DP + NaCl+ Citric Acid	C	25.87 ^h	25.55 ^g	25.31 ^{fg}	25.07 ^{fg}	24.80 ^f	24.72 ^f	24.46 ^{ef}	
Hue	NaCl+ Citric Acid	A	68.07 ^c	68.32 ^c	68.62 ^{cd}	68.92 ^d	69.10 ^e	69.47 ^{ef}	70.19 ^f	
	DP	В	62.97a	63.13 ^{ab}	63.16 ^{ab}	63.34 ^b	63.11 ^{ab}	63.36 ^b	63.24 ^{ab}	
	DP + NaCl+ Citric Acid	C	63.18 ^{ab}	63.19 ^{ab}	63.30 ^{ab}	63.28 ^b	63.16 ^{ab}	63.34 ^b	63.45 ^b	
Chroma	NaCl+ Citric Acid	A	25.42 ^{cd}	25.07°	24.89 ^c	24.46 ^{bc}	24.21bc	23.98 ^b	23.63a	
	DP	В	28.17 ^{fg}	27.59 ^f	27.26 ^{ef}	26.96 ^e	26.67 ^{de}	26.41 ^{de}	26.08 ^d	
	DP + NaCl+ Citric Acid	C	28.99 ^g	28.62g	28.33 ^{fg}	28.07 ^{fg}	27.79 ^f	27.66 ^f	27.349	

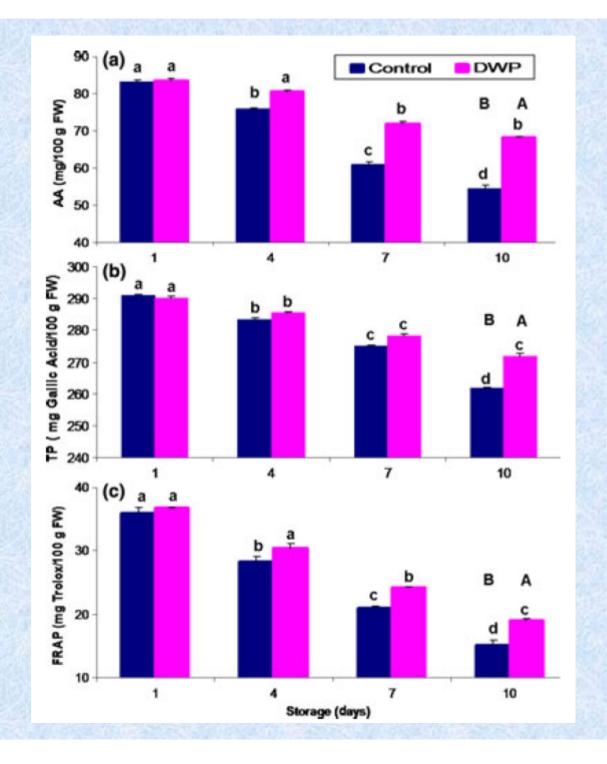
Strawberries



Processing steps for fresh strawberries


Strawberries

Effect of whey delactosed permeate (DP) treatment on (A) decay incidence, (B) total aerobic counts and (C) yeast and moulds of strawberries during 10 days of storage at 4 °C



Strawberries

Sensory evaluation of strawberries treated with whey delactosed permeate (DP) and compared with control (washed with distilled water) samples at 4 °C for 10 days of storage

Conclusion

- Whey permeate possesses valuable components & functional properties.
- Delactosed permeate (DP) had significantly better results.
- Whey permeates performed better or similar to the industrial standard chlorine in retaining the quality of fresh-cut tomatoes.
- DP significantly reduced the decay incidence, lowered the growth of microbial population and maintained overall quality & antioxidant components of whole tomatoes and strawberries.
- DP significantly retained the phytochemical content and maintained firmness of canned tomato.
- The presence of anti-microbial peptides (caseinmacropeptide or bacteriocins) in DP might contribute to its anti-microbial capacity.
- Therefore, DP treatment could be used as a potential preserving agent for freshcut, whole and processed fruits and vegetable products to extend the shelf-life and maintain the nutritional quality during storage.

WHEYSAN

whey based formula

http://www.contactica.es/wheysan/index.php

Acknowledgements

- Dr Lubna Ahmed
- DIT Strand I Research Project for financial support
- Teagasc Food Research Centre and its supporting staff
- Glanbia (Ltd Ingredients, Ireland) for supplying the whey permeate
- Amcor Flexible Ltd. for providing OPP film
- Sharp Interpack for supplying polypropylene tray